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Abstract. We establish distortion estimates in completely solvable Lie groups, using
a sublinear bilipschitz retraction constructed by Cornulier, and interpolating between
two theorems of Osin. This provides new lower bounds on Dehn functions. Our
second main result is the quasiisometric rigidity of Sol5 and its lattices. Together
with a theorem of Peng, a key tool for the rigidity is the complete list of Dehn
functions and dimensions of asymptotic cones of all simply connected solvable Lie
groups of exponential growth up to dimension 5, which we compute using Cornulier
and Tessera’s results.
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1. Introduction

This study is motivated by the quasiisometric classification and rigidity of connected
Lie groups. By a result of [Cor11], this problem amounts to the quasiisometric clas-
sification and rigidity in the class of completely solvable groups, which are the closed
subgroups of the upper triangular real matrix groups1. Our focus here is on Dehn func-
tions, a prominent quasiisometric invariant. In [CT17], Cornulier and Tessera develop a
rich theory for computing Dehn functions of completely solvable groups. Their work is
remarkable in its completeness: for example, it allows us to determine the Dehn func-
tions of all completely solvable groups that are of exponential growth and dimension up
to 5 (see Proposition D).
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This paper has two main novel contributions. We develop a theoretical tool that
allows one to obtain lower bounds on the Dehn functions using distortions in central
extensions of completely solvable groups. This tool is based on a sublinear bilipschitz
retract between a group G and the largest nilpotent quotient of ρ1(G) (see Section 2 for
details). Our second contribution is a quasiisometric rigidity result for the group Sol5,
isometric to a particular horosphere in H2 × H2 × H2. We obtain it by combining our
Dehn function computations with a theorem of Peng [Pen11a, Pen11b].

Remark 1.1. In a recent and closely related paper [GP24], we give several more applica-
tions to our Dehn functions computations. In particular, we combine these computations
with our results in [GP24] in order to distinguish between several quasiisometry classes
of completely solvable groups.

1.A. Completely Solvable Groups, Distortions and Dehn Functions.

Definition 1.2 (Distortion). Let G be a simply connected Lie group, and let X be
a nonzero element of its Lie algebra g. The distortion function of a one-parameter
subgroup L = {exp(tX)} in G is the growth type of the function

∆G
L (r) = sup{t : exp tX ∈ BG(r)}.

Definition 1.3 (Central depth). Given X ∈ s a nonzero vector in a Lie algera s, we
call central depth of X and write cX = sup{j ∈ Z⩾1 ∪ {∞} : X ∈ Cjs}, where C1s = s
and Cj+1s = [s, Cjs] for all j ⩾ 1.

The theorem below relates distortion and central depth, interpolating between the
main result of [Osi01] (which corresponds to the case when the group S in the statement
is nilpotent and central depths are all finite) and that of [Osi02]; we use both theorems
of Osin in the proof.

Theorem A (Evaluating distortion in completely solvable groups). Let S be a com-
pletely solvable group with Lie algebra s. Let X ∈ s be nonzero. Let L be the one-
parameter subgroup generated by X in S.

(1) If cX <∞, and if X is in a Cartan subalgebra (e.g. if X is a regular or central
element) then

∆S
L(r) ≍ rcX .

(2) [Osi02]2 If cX = ∞ then ∆S
L is exponential.

Distortion estimates of central extensions are known to have consequences for lower
bounds on the Dehn functions in certain classes of groups. We adapt this principle
here for polynomial lower bounds in simply connected Lie groups and deduce from
Theorem A the following:

Corollary B. Let G be a completely solvable group with Lie algebra g. Let

0 → R → s
π−→ g → 0

be a central extension. Let X be a generator of kerπ and assume it has finite central
depth. Then ncX ≼ δG(n).

Remark 1.4. In the notations of Corollary B, if cX = ∞ then δG(n) is at least exponen-
tial; this is a special case of [CT17, Theorem 11.C.1].

2By [Osi02] the converse of (2) in Theorem A is also true.
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Example 1.5. (See Section 3.E). Let G be a central product of Abels’ second group
[Abe87, Example 5.7.4] and a model filiform nilpotent group of class 3. By Corollary B
the Dehn function of G is at least cubic; precisely one can show that

n3 ≼ δG(n) ≼ n4 log8(n).

The upper bound is due to Cornulier-Tessera [CT17].

The previously known lower bound is due to Cornulier-Tessera; after making some
estimates explicit, it is n3/ log8(n), as a consequence of the following theorem.

Theorem 1.6 (After Cornulier and Tessera [CT17], see Section 3.D). Let G be a com-
pletely solvable group, N its largest nilpotent quotient. Then

(1) Either, G has an exponential Dehn function
(2) Or, there exists e (depending on G) such that

(1.1) δN (r)/ loge(r) ⪯ δG(r) ⪯ r · δ̂N (r) · loge(r),

where in the right inequality, δ̂N is any regular function larger than δN . (A

function f is regular if there exists α > 1 such that f(x)
xα is non-decreasing on

R⩾0; in all cases where δN is known it is already regular and one may take

δ̂N = δN .)

Moreover, if c is the nilpotency class of N , then one can take e = 2(c+ 1).

As Example 1.5 shows, Corollary B sometimes allows to get rid of the power of log
factor in the leftmost term of (1.1).

Remark 1.7. Cornulier and Tessera’s estimates on the Dehn function are sharper than
(1.1) in some subclasses of completely solvable groups; see [CT17] and Section 3.D.

1.B. Quasiisometric Rigidity of Sol5. The group Sol5 (also namedG−1,−1
5,33 in [Mub63]),

is the semidirect product R2 ⋉R3 with diagonal action of the R2 torus, such that the
three weights ϖ1, ϖ2, ϖ3 ∈ Hom(R2,R) are linearly independent and sum to zero.
Among all the left-invariant metrics on this group, one makes it isometric to a hyper-
surface

H = {(z1, z2, z3) ∈ H2 ×H2 ×H2 : b1(z1) + b2(z2) + b3(z3) = 0}
where for i = 1, 2, 3, bi is a horofunction only depending on the projection to the ith

factor. As such, it is a higher-rank generalization of the three-dimensional group Sol3
(or SOL) which admits the same description as a horosphere in H2 ×H2.

Theorem C (Propositions 5.5–5.9). The following hold:

(1) Let G be a group of class (C0), quasiisometric to Sol5. Then G is isomorphic as
Lie group to Sol5.

(2) Let Γ be a finitely generated group quasiisometric to Sol5. Then there is a finite-
index subgroup Γ0 in Γ and a homomorphism Γ0 → Sol5 with finite kernel and
whose image is a lattice in Sol5.

Remark 1.8. Passing to the finite index subgroup Γ0 of Γ is necessary in the quasiiso-
metric rigidity statement (2) of Theorem C above. See Remark 5.7.

The distinctive properties of Sol5 used in the proof of Theorem C is that, unlike all
the other completely solvable Lie groups of the same dimension and cone-dimension,
it is unimodular and has an exactly quadratic Dehn function. The fact that its Dehn
function is quadratic was proved by Druţu [Dru04, Theorem 1.1] and Leuzinger-Pittet
[LP04, Corollary 2.1]. The fact that it is the only such group is a consequence of our
computations of Dehn functions, which we sum up in the following proposition.
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Proposition D. The simply connected solvable Lie groups of dimension less or equal
five and exponential growth have Dehn function of growth type n, n2, n3, n4 or exp(n)
exactly, all given for the groups of dimension less than 5 in Table 4 and for the groups
of dimension 5 in Table 5. Moreover, for all these groups, either the Dehn function is
exponential, or it is equal to that of the largest nilpotent quotient.

Our computations leading to Proposition D use Cornulier and Tessera’s theorems
in [CT17].

In relation with Theorem 1.6, Proposition D leads to ask whether the Dehn function
of a completely solvable group is always either exponential or equal to that of its largest
nilpotent quotient. According to Cornulier and Tessera (work in progress, [CT]), Abels’
second group does not satisfy this simple guess: its Dehn function is strictly faster than
quadratic, although at most cubic.

More generally, we can reframe this into the language of isoperimetric spectrums. Let
us introduce two sets of real numbers:

LIP = {α ∈ [1,+∞) : ∃G connected Lie, lim
n→+∞

log δG(n)

log n
= α},

NIPR = {α ∈ [1,+∞) : ∃N connected Lie nilpotent, lim
n→+∞

log δN (n)

log n
= α}

and note that

N≥1 ⊆ NIPR ⊆ LIP ⊆ {1} ∪ [2,+∞).

Question 1.9. Are there equalities in the chain of inclusions above?

The discussion above on a possible improvement of Theorem 1.6 is now related to
knowing whether there is equality in the second inclusion. Ultimately, this question
is about how diverse the Dehn functions of nilpotent and solvable Lie groups can be,
and if there is a difference. For a comparison it is known that the closure of IP, the
isoperimetric spectrum of finitely presented groups is equal to {1} ∪ [2,+∞) [BB00].

Remark 1.10. Notice that multiplicative differences of power of logarithms factors in
the Dehn function are not seen in the isoperimetric spectrums. Combining Theorem 2.9
with Corollary 3.7 we see that the set LIP does not change if one considers, instead of
all connected Lie groups, only Lie groups of the class C1 (see Section 2.B for details).

Finally, our computations raise interest in two families of groups with parameters.
These families exhibit interesting behavior, which we present in Section 4.A. In partic-
ular we discuss their quasiisometric invariants, geometry, and what is missing in order
to achieve quasiisometric classification within these families.

1.C. Organization of the paper. Section 2 introduces the theory of completely solv-
able Lie groups and the significance of sublinear bilipschitz equivalence (SBE) to this
theory. Section 3 is dedicated to the proof of the lower bounds estimates of Dehn func-
tions. In Section 3.A we prove the distortion estimates stated in Theorem A, and in
Section 3.B we apply them to obtain the lower bounds. Section 3.D compares our re-
sults with other lower bound methods. In Section 3.E we elaborate on Example 1.5, in
which our tool improves on previously known techniques.

Sections 4 and 5 contain the concrete contribution towards the quasiisometric clas-
sification of low dimensional completely solvable Lie groups. Building on our Dehn
function computations, Section 4.A elaborates on particular families of completely
solvable Lie groups which exhibit interesting behavior. In Section 5 we prove the
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quasiisometric rigidity of the group G−1,−1
5,33 (Theorem C), building on the work of

Peng [Pen11a], [Pen11b] for the part concerning finitely generated groups.
The Dehn function computations are presented in Appendix A, where we list the

groups up to dimension 5 and compute their image by ρ1 (Tables 1 and 2) as well as
their Dehn functions (Tables 4 and 5). Our computations are based on a list of criteria,
mostly following [CT17], which are explained in Section A.1. Finally in Section A.2 we
give plenty of examples and explain how to preform the computations.

1.D. Acknowledgements. We thank Yves Cornulier for a useful discussion and point-
ing us to Theorems 6.E.2 and 10.H.1 in [CT17]. The first author would like to thank
Yair Glasner, Ori Parzanchevsky and Shai Evra for their interest and support. The
second author would like to thank Claudio Llosa Isenrich for a useful discussion.

2. Completely solvable groups

A simply connected solvable Lie group G is quasiisometric to a completely solvable
group ρ0(G), called the trigshadow of G [Cor08]. There are several possible, equivalent
definitions for ρ0(G). Below we give that of Jablonski, building on Gordon and Wilson.

Proposition 2.1 ([Jab19, §4.1 and §4.2], after [GW88]). Let G be a simply connected
solvable Lie group. There exists a (possibly non-unique) left-invariant metric gmax on
G whose isometry group contains a transitive completely solvable group G0. Moreover,
the group G0 obtained in this way is unique up to isomorphism and it does not depend
on gmax.

Definition 2.2. Let G be a simply connected solvable Lie group. We define ρ0(G) as
G0. We say that a group is in the class (C0) if G = ρ0(G), that is, if G is completely
solvable.

It is clear that the groups G and G0 are quasiisometric, being closed co-compact

subgroups of the isometry group Ĝ of gmax. They are commable in the terminology

of [Cor18]. The role of the group Ĝ is played by the group denoted G3 in Cornulier’s
treatment ([Cor20, Lemme 1.3], summarizing [Cor08]).

Definition 2.3. Let G be a group in the class (C0). The exponential radical RexpG of
G is the smallest normal subgroup N of G such that G/N is nilpotent.

The exponential radical was named by Osin [Osi02] as it is the subgroup of exponen-
tially distorted elements in G (together with 1). We call dimG/RexpG the rank of G. If

Ĝ is a real semisimple Lie group with trivial center, writing an Iwasawa decomposition

Ĝ = KAN and setting G = AN , we recover that the real rank of Ĝ is the rank of G.
More generally, the rank as defined here is still the dimension of one (or any) Cartan
subgroup of G.

2.A. Standard Solvable Groups. When the group splits over its exponential radical
there are some concrete advantages. In particular, Cornulier and Tessera prove that the
following property has many implications for upper bounds on Dehn functions.

Definition 2.4 (After Cornulier and Tessera, [CT17, Definition 1.2]). Let G be a group
in (C0), n = Rexp g. We say that G is standard solvable if its exponential radical splits,
the quotient A = G/RexpG is abelian, and the action of a on n/[n, n] has a trivial
kernel.
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The conditions in the definition above are easier to verify than those which appear
in [CT17], and it is not entirely obvious why the two definitions are equivalent. Es-
pecially, in [CT17] it is asked that the action of a on every proper quotient of n/[n, n]
does not admit zero as a nontrivial weight, and n is not a-priori required to be the
exponential radical. The following proposition establishes the equivalence of the two
definitions (for real Lie groups; the original definition applies in a wider setting including
non-Archimedean Lie groups as well),

Proposition 2.5. Let G be a completely solvable group. Assume that G splits as U⋊A,
where A is abelian, U is nilpotent, and the action of A on U/[U,U ] has no fixed point.
Then

U = [G,G] = RexpG.

Moreover, the action of A on any non-trivial quotient of U/[U,U ] has no fixed point,
hence G is standard solvable in the sense of [CT17].

Proof. With notation as before, consider

g = u⋊ a,

and denote ρ : a → gl(u/[u, u]). In order to prove that u ⊂ [g, g], it is enough to prove
that ρ(a)(u/[u, u]) = u/[u, u]. Indeed, if for u ∈ u, we can write

u = [a, u′] + w

where u′ ∈ u and w ∈ [u, u] ⊆ [g, g], then u is the linear combination of Lie brackets
in g, so u ∈ [g, g]. Let us now prove the claim. Let v = u/[u, u] and let v ∈ v.
Write v = v1 + · · · + vs, where vi ∈ V λi , λi ∈ Hom(a,R) nonzero. It is sufficient to
prove that vi is in the image of ρ(a) for every i = 1, . . . , s. Choosing ai ∈ a such that
λi(ai) ̸= 0, we find that ρ(ai)|V λi has nonzero diagonal entries, hence it is surjective, so

that vi ∈ ρ(ai)(u/[u, u]). The fact that ρ(a)(u/[u, u]) = u/[u, u] also implies that in any
non-trivial quotients of u/[u, u], the zero weight of the a-action is trivial.

We proved that u ⊆ [g, g]. The converse containment follows from the fact that
g/u = a is abelian. Now, C3g = [g, g] because of the following series of equalities

[g, u] = [a+ u, u] = [a, u] + [u, u] = u.

and in view of the fact that Rexp g is the limit of the central series, u = Rexp g. □

We can check that all the groups of class (C0) of dimension less than 5, save for
one, are standard solvable (See Table 4). The only exception is the group G4,3, since
G4,3/RexpG4,3 is non-abelian. There are many non-standard solvable groups of dimen-
sion 5 and class (C0) - see Appendix A.2.2.

2.B. The class C1 and sublinear bilipschitz equivalence. It may happen that G ∈
C0 does not split over its exponential radical. Cornulier [Cor11] proved that nonetheless,
such G is always coarsely geometrically related to a group ρ1(G) which does. More
precisely, there is always a is sublinear bilipschitz equivalence between G and a group
ρ1(G), where the latter splits over its exponential radical, and moreover the action
of ρ1(G)/Rexp ρ1(G) on Rexp ρ1(G) is R-diagonalizable. This is the content of the
definitions and theorems below.

Definition 2.6. Let G be a completely solvable Lie group with exponential radical N .
Say that G is in (C1) if the extension 1 → N → G→ G/N → 1 splits and the action of
G/N on N is R-diagonalizable.
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Definition 2.7. Let G be a completely solvable group with N = RexpG, and set
H = G/N . Decompose ϕ = ad: g → Der(n) into

ϕ = ϕδ + ϕν

where ϕδ is R-diagonalisable and ϕν is nilpotent [Bou75]. Note that ϕδ is zero when
restricted to n, so that it is well-defined on h. Let ρ1(G) be N ⋊H, where h acts on n
through ϕδ. We also write ρ1(g) for Lie(ρ1(G)).

Let X and Y be metric spaces. After fixing x0 ∈ X and y0 ∈ Y , we denote by
| · | the distance to the respective basepoints in X and Y . We denote |x1| ∨ |x2| :=
max{|x1|, |x2|}.

Let u : R⩾0 → R⩾1 be a sublinear function, that is,

lim
r→+∞

u(r)

r
= 0.

Definition 2.8. Let X, Y , x0, y0 and u be as above. Let L ⩾ 1. We say that f : X → Y
is

• (L, u, x0)-Lipschitz if for every x, x
′ ∈ X, d

(
f(x), f(x′)

)
⩽ Ld(x, x′)+u(|x|∨|x′|)

• (L, u, x0)-expansive if L−1d(x, x′)− u(|x| ∨ |x′|) ⩽ d
(
f(x), f(x′)

)
• (u, y0)-surjective if for every y in Y , there is x ∈ X such that d

(
y, f(x)

)
⩽ u(|y|).

We say that f is a (L, u)-bilipschitz embedding if it is (L, cu, x0)-Lipschitz and
(L, cu, x0)-expansive for some c ⩾ 0. If f is additionally (u, y0)-surjective for some
y0, then for all y′0 ∈ Y there is c′ > 0 such that it is (c′u, y′0)-surjective; in this case, we
say that f realizes a

(
L,O(u)

)
-bilipschitz equivalence, or for short, a O(u)-bilipschitz

equivalence between X and Y . When no reference is made to L and u we will call a
(L, u)-bilipschitz embedding a sublinear bilipschitz embedding.

Theorem 2.9 (Cornulier, [Cor11]). Let G be a completely solvable group, and let H =
G/RexpG. Then

(1) G and ρ1(G) are O(log)-bilipschitz equivalent.
(2) H is a O(log)-Lipschitz retract of G, more precisely:

(a) π : G→ H is O(log)-Lipschitz;
(b) Let X be a nonzero vector in a Cartan subalgebra of g. Then there exists

f : H → G (depending on X) which is O(log)-Lipschitz and such that
(i) π ◦ f is O(log)-close to the identity of H.
(ii) f ◦ π(exp(tX)) = exp(tX) for all t in R.

Proof. Part (1) is stated by Cornulier [Cor11]. Parts (2a) and (2bi) express that π : G→
H is a retract in the category of O(log)-Lipschitz maps, which is also stated in [Cor19,
Example 2.6] and the content of the proof can be found [Cor11, Theorem 4.4], where
in the notation of [Cor11], f is the map ψ−1

|V (before the statement of Theorem 4.4).

See also the few lines before [Cor08, Lemma 5.2] where the map f that we need is
named ψ. To check part (2bii) we have to specify the construction of f ; for this we
refer to some parts of Cornulier’s proof in [Cor11]. In Cornulier’s construction, π(X)
is identified with an element ξ in a subspace of V , the complement of the Lie algebra
of h ∩ Rexp g in h where h can be taken to be any Cartan subalgebra of g, and then,
f ◦ π(exp(tX)) = expG(tξ). Since in our assumption, X lies in a Cartan subalgebra h
of X, we can take the Cartan subalgebra in the construction of f to be h, and then,
with this choice, take ξ to be equal to X. In this way, f ◦ π(exp(tX)) = exp(tX) for all
t ∈ R. □
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3. Distortion in completely solvable groups and Dehn function estimates

The theory of Dehn function and filling pairs is well known for finitely generated
groups, and generalizes naturally for compactly presented groups. We refer to [CT17]
for the basic definitions and a detailed exposition of this subject in the context of
compactly presented groups.

Given two functions f, g from R⩾0 or Z⩾0 to itself, we will write f(r) ≼ g(r) if there is
some constant C > 0 such that f(r) ≼ Cg(Cr+C)+Cr+C. We also write f(r) ≍ g(r)
if f(r) ≼ g(r) and g(r) ≼ f(r).

3.A. Proof of Proposition A. We now proceed with the proof of Proposition A. We
first recall the setting. Let G be a completely solvable group, let H = G/RexpG and
let π : G→ H be the projection. Let X ∈ g\{0} be an element in a Cartan subalgebra,
L be the one-parameter subgroup generated by X, and let cX be its central depth.

Our goal is to evaluate the distortion of the subgroup generated by X.
In the case where cX = ∞, X is in RexpG, and the conclusion follows directly from

[Osi02].
In the case cX ̸= ∞, π(L) is polynomially distorted with degree cX in H by [Osi01].

This means that there exists a constant M ⩾ 1 so that for t large enough,

1

M
t1/cX ⩽ dH(exp(tπ(X)), 1) ⩽Mt1/cX

(here we still denote π the map Lie(π) for convenience). Now, by Cornulier’s theorem
2.9, the map π : G → H is a O(log)-retract. This implies, on the one hand, that π is
O(log)-Lipschitz. So, for some λ > 0 and c ⩾ 0, dH(exp(tπ(X), 1) ⩽ λdG(exp(tX), 1) +

c log t. So dG(exp(tX), 1) ⩾ 1
λM t1/cX − c

λ log t, and then for t large enough,

(3.1) dG(exp(tX), 1) ⩾
t1/cX

2λM

Then, for r > 0 large enough,

sup{t : exp tX ∈ BG(r)} ⩽ (2λM)cXrcX .

Thus ∆G
L (r) ≼ rcX . On the other hand, using part (2b) in Theorem 2.9, there exists

a O(log)-lipschitz map f : H → G such that f(exp(tπ(X))) = exp(tX). Taking larger
constants λ and c if needed, we have that

dG(exp(tX), 1) ⩽ λdH(exp(tπ(X)), 1) + c log dH(exp(tπ(X)), 1)

⩽ λMt1/cX +
c

cX
log t,

so that λM∆G
L (r)

1/cX + c
cX

log∆G
L (r) ⩾ r, and then, ∆G

L (r) ≽ rcX .

Remark 3.1. For our use of Theorem A, namely in Proposition 3.2 below, the element
X will always lie in the centre of g, therefore will always lie in a Cartan subalgebra. In
particular the assumption that X lies in a Cartan subalgebra of g does not impose any
restrictions to us later on. We do not know whether this assumption is necessary in the
statement of Theorem A.

3.B. From the distortion in an extension to the Dehn function.

Proposition 3.2. Let G be a simply connected solvable Lie group. Let ω ∈ Z2(G,R);
assume that in the central extension

1 → R
ι−→ G̃

π→ G→ 1
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associated to ω, the subgroup L = ι(R) is distorted, and ∆G̃
L (n) ≽ nk. Then the Dehn

function of G has growth type at least n 7→ nk.

The main ingredient is the following lemma.

Lemma 3.3. Let G be a simply connected solvable Lie group. Equip G with a left-
invariant Riemannian metric. Let α ∈ Ω1(G,R) be a smooth one-form; assume that

• dα is left-invariant, and
• There exists a family (γn)n⩾1 of piecewise smooth loops, with length(γn) ⩽ cn
and

∫
γn
α ⩾ c′nk for some positive constants c, c′.

Then the Dehn function of G has growth type at least n 7→ nk.

Proof. We will prove that the filling area Fill(γn) of γn is larger or equal than a constant
times nk. For every n ⩾ 1 let ∆n be a Lipschitz disk in G such that ∂∆n = γn, by which
we mean that ∆: B2 → G is a Lipschitz embedding of the Euclidean 2-disk B2 into G
such that ∆n|S1 is a reparametrization of γn. ∆ defines an integral Lipschitz chain in
G, as defined in [Fed74, 2.11]. On the other hand, since it is smooth and has bounded
exterior derivative, α represents a flat cochain as defined in [Fed74, 4.6]. By Federer’s
version of Stokes’ theorem [Fed74, 6.2],

(3.2)

∫
∆n

dα =

∫
γn

α ⩾ c′nk.

Now dα is left-invariant, so there is a constant L > 0 (namely, the point-wise comass
norm of dα with respect to the Riemannian metric) such that

(3.3)

∣∣∣∣∫
∆n

dα

∣∣∣∣ ⩽ LArea(∆n) =: L

∫
B2

|Λ2d∆(x)|dx

for all n. Combining (3.2) and (3.3) yields

(3.4) Area(∆n) ⩾
c′

L
nk

for all n. Since length(γn) ⩽ cn, this finishes the proof that the filling area of G, defined
by

FillG(r) = sup
γ : S1→G, length(γ)⩽r

inf{Area(∆): ∂∆ = γ}

is at least of growth type n 7→ nk. Now δG(n) ⪰ Fill(n) by [CT17, Proposition 2.C.1].3

□

Proof of Proposition 3.2 using Lemma 3.3. Let G and ω ∈ Z2(G,R) be as in the state-
ment of Proposition 3.2, and let α be a one-form on G such that dα = ω. For all n, let

γ̃n be a piecewise C1 loop in G̃ from 1 to ι(nk). By the assumption on the distortion,
we can assume that there is a constant c > 0 such that length(γ̃n) ⩽ cn. We now let
γn be the projection of γ̃n in G. This is a piecewise C1-loop, with length ⩽ cn. We
now claim that

∫
γn
α = nk. This follows from [GMIP23, Lemma 3.1]; there, the Lemma

is stated for simply connected nilpotent Lie groups, but the nilpotency assumption is
actually not used; the lemma holds for simply connected Lie groups. □

3Actually [CT17] gives the stronger result that δG(n) ≍ FillG(n), however, the converse inequality is
much more involved.
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Remark 3.4. Exponentially distorted central extensions also yield lower bounds on the
Dehn function. For a group G of class (C1), the existence of an exponentially distorted
central extension is equivalent to the 2-homological obstruction of Cornulier and Tessera
that we will discuss in the next section; see [CT17, 11.E] on this equivalence.

Remark 3.5. Proposition 3.2 is very close to [GMIP23, Proposition 3.7]. It is slightly
stronger, even when restricted to nilpotent groups, since in [GMIP23, Proposition 3.7]
there is the additional assumption that the nilpotent group G should be of nilpotency
class k − 1. The difference comes from the different versions of Stokes theorem used.
When G is nilpotent and under the additional assumption that it has a lattice Γ, the
result of Proposition 3.2 can be obtained by combinatorial arguments considering central
extensions of Γ instead of G; this method does not require any assumption on the
nilpotency class of G and Γ. It is described already in [BW97].

3.C. Example. There are two completely solvable groups of dimension 4 and cone
dimension 3. These are G4,3, which we define below, and A2 ×R2. We will prove that
the Dehn function of G4,3 is cubic, while the Dehn function of A2 ×R2 is quadratic.

The Lie algebra of G4,3 has a basis (e1, e2, e3, e4) in which the nonzero Lie brackets
are [e4, e1] = e1 and [e4, e3] = e2. (Our e4 is the opposite of the corresponding notation
in [PSWZ76], for convenience; the others are the same.) The derived subalgebra is
the abelian ideal generated by e1 and e2. The next term in the central series (and
exponential radical) is Re1, and the center is Re2. Consider the dual basis (ω1, . . . , ω4)
to (e1, . . . e4). The 2-form ω4 ∧ ω2 is closed, since

d(ω4 ∧ ω2) = dω4 ∧ ω2 − ω4 ∧ dω2 = −ω4 ∧ ω3 ∧ ω4 = 0.

It is not exact, since Z2(g4,3,R) is spanned by ω1 ∧ ω4 and ω3 ∧ ω4. Hence, there is a
nontrivial central extension

1 → R → G→ G4,3 → 1.

where G is a 5-dimensional, completely solvable group (this is G5,10 on Table 2). More-
over, the kernel of this extension is cubically distorted, as we explain now. Let us write
ẽi such that ẽ5 generates the kernel of the central extension, and ẽi projects to ei in g4,3
for 1 ⩽ i ⩽ 4. ẽ5 lies in the third term of the descending central series of g, so that we
can apply Proposition A.

3.D. Comparison with other known bounds on the Dehn functions. Theo-
rem 1.6 is essentially proven by Cornulier and Tessera. Since they do not state it in this
way, we will provide some explanations on how to deduce it from [CT17] using their
tools. The main ingredient is [CT17, Theorem 10.H.1]. The theorem essentially states
that for a Lie group G, either the Dehn function is exponential, or it is well estimated
(with error terms) by the Dehn function of the largest nilpotent quotient of a completely
solvable group quasiisometric to G.

We present the ingredients and then assemble the proof.

3.D.1. Dehn functions and O(log)-bilipschitz equivalence. The Dehn functions of two
groups that are O(log)-bilipschitz equivalent are equal up to a factor of a power of log.
We will use it for the pair G and ρ1(G). The following statements are essentially [CT17,
Corollary 3.C.2], formulated in a slightly more general way. We omit the proof, which
is identical.

Lemma 3.6. Let G and H be two locally compact compactly presented groups, with
filling pairs (fG, gG) and (fH , gH) respectively. Assume there is an (L, u)-bilipschitz
equivalence ϕ : H → G. Then we have the following:
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(1) fH(n) ≼ fG
(
nu(n)

)
· fH ◦ u ◦ gG

(
nu(n)

)
.

(2) gH(n) ≼ gH ◦ u ◦ gG
(
nu(n)

)
+ gG

(
nu(n)

)
.

Corollary 3.7. If (fG, gG) = (nd, ne), then fH(n)

fH

(
u(n2e)

) ≤ n2d. If moreover u = log,

then fH is polynomially bounded. In particular, for two connected Lie groups G and H
that are (L, log)-bilipschitz, if (fG, gG) = (nd, nd) then fH ≼ nd log2d(n).

3.D.2. Lower bounds and Lipschitz Retracts. Among finitely presented groups, going to
a group-theoretic retract decreases the Dehn function, as can be seen by choosing an
adequate pair of presentations for which the retract corresponds to an enlargement of
the set of relators; see e.g. [BMS93, Lemma 1]. This is still valid for Lie groups; this
fact is used several times in [CT17] but we provide a proof for completeness.

Proposition 3.8. Let G be a simply connected Lie group, and let H be a retract of G
in the Lie group category. Then δH ≼ δG.

Proof. Consider the epimorphism π : G → H and let σ : H → G be a section of π.
Let dG be a left-invariant Riemannian distance on G, and let dH be a left-invariant
Riemannian distance on H such that π is a Riemannian submersion. Then for every
h, h′ ∈ H,

(3.5) dH(h, h′) = distG(σ(h)N, σ(h
′)N)

where N = kerπ (see e.g. [HP13, Lemma 4.6]). Let γ : S1 → H be a Lipschitz loop
of dH -length exactly n, and consider the loop γ̂ = σ ◦ γ. The dG-length of γ̂ is less or
equal to n thanks to (3.5); it is also greater or equal than n, since π is 1-Lipschitz and
sends γ̂ onto γ. Using the equivalence of the Dehn function and the filling function in
G [CT17, Proposition 2.C], there is a filling of γ̂ in G by a Lipschitz disk ∆ of area at
most the order of δG(n). Since π : (G, dG) → (H, dH) is 1-Lipschitz, π ◦∆ has area less
than ∆. Using again the equivalence of the Dehn function and the filling function, in
H and in the reverse direction, we conclude that δH(n) ≼ δG(n). □

3.D.3. Generalized Standard Solvable Groups. A special case of interest where the group
G retracts to a subgroup is when the short exact sequence determined by the exponen-
tial radical of G splits. This case is captured by Cornulier and Tessera’s definition of
generalized standard solvable groups:

Definition 3.9 ([CT17], Section 10.H.1). Let G be a completely solvable group. We
call G generalized standard solvable if G = V ⋊N where N is nilpotent and such that
the following condition on the action of N on V is met: there is no nontrivial quotient
of V/[V, V ] on which N acts as the identity.

If G ∈ C0 admits a splitting G = V ⋊ N as a generalized standard solvable group,
then if N is abelian then V = Rexp(G) (Proposition 2.5) and G is standard solvable.
In general, any such splitting with N nilpotent forces V to contain the exponential
radical. On the other hand, if G ∈ C0 is moreover in (C1), it is automatically generalized
standard solvable with V = Rexp(G):

Lemma 3.10. If G is of class (C1), then it is generalized standard solvable via the
splitting G = RexpG⋊N .

Proof. Let U be the exponential radical of G and assume towards contradiction that
H1(u) has zero as a nontrivial weight. Let X be a nonzero vector in the corresponding

kernel, and let X̂ ∈ u be such that X = X̂ + [u, u]. Then [n, X̂] ⊆ [u, u]. But since

u is the exponential radical of g, one has [g, u] = u, especially [g, u] should contain X̂.
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However the map g× u → u which to (Y,U) associates [Y,U ] is not surjective, since its

image cannot contain X̂ (remember that since G is in (C1), the action of n on u/[u, u]
is diagonalizable. So a nonzero vector in the kernel cannot be in the image). This is a
contradiction. □

The following is the main result of Cornulier and Tessera on generalized standard
solvable groups. See Section A.2 for the definition of Kill(v).

Theorem 3.11 ([CT17], Theorem 10.H.1). Let G = V ⋊N be a generalized standard
solvable group whose Dehn function is non-exponential (i.e. strictly smaller than expo-

nential). Then δG(n) ≼ n · δ̂N (n), where δ̂N denotes any regular function larger than

δN . If, moreover, Kill(v)0 = 0 then δG(n) ≼ δ̂N (n).

We are now ready to complete the proof of Theorem 1.6 assuming the results we took
from [CT17].

Proof of Theorem 1.6. Let G be a Lie group. It is quasiisometric to a completely solv-
able group G0 and δG ≍ δG0 . In turn, G0 is O(log) bilipschitz equivalent to G1 := ρ1(G0)
(Theorem 2.9), hence Corollary 3.7 gives δG1(n)/ log

e(n) ≼ δG0(n) ≼ δG1(n)·loge(n). By
definition, G = RexpG⋊N hence δN (n) ≼ δG1(n) by Proposition 3.8. By Lemma 3.10

G1 is generalized standard solvable, and Theorem 3.11 gives δG1(n) ≼ n · δ̂N (n). Com-
bining all inequalities completes the proof. □

A careful read of the proof of Theorem 1.6 sheds light on the theoretical contribution
of Theorem A and Proposition 3.2 over their well known nilpotent groups analogues. IfG
is in (C1) and N = G/RexpG, then any lower bound on δN (in particular those coming
from distorted central extensions) is automatically a lower bound on δG. However
in general in order to retract to a nilpotent group one might have to pass to ρ1(G),
which comes at a cost of a power of log factor on the lower bound. Our version allows
using distorted central extensions without passing to the nilpotent quotient, therefore
removing this factor.

The distortion arising from central extensions as in Corollary B cannot be used to
distinguish δG from δN , because every polynomially distorted central extension of G is
a pull back of a central extension of N . More precisely:

Lemma 3.12. Let G ∈ C0, N = G/RexpG. Let ω ∈ Z2(G,R); assume that in the
central extension

1 → R
ι−→ G̃

π→ G→ 1

associated to ω, the subgroup L = ι(R) is distorted, and ∆G̃
L (n) ≍ nk. Then ω is the

pull back of some η ∈ Z2(N,R) such that in the associated central extension

1 → R
j−→ Ñ

π→ N → 1

the subgroup M = j(R) is distorted with nk ≼ ∆Ñ
M (n).

Remark 3.13. By [CT17, Theorem 11.C.1]), the hypothesis that L is polynomially dis-

torted in G̃ can be replaced by ‘G has polynomially bounded Dehn function’.

Corollary 3.14. In the setting of Lemma 3.12, δN (n) ≽ nk.

Proof. By Theorem A, the hypothesis implies L < CkG, and it is enough to prove that
that there exists such η withM < CkN , the kth term of the lower central series. Denote
U := RexpG, so N = G/U . Further denote Ũ := Rexp G̃. The proof is straightforward,
using the definitions of brackets in central extensions and functoriality of passing to



LOWER BOUNDS ON DEHN FUNCTIONS AND QI RIGIDITY OF SOL5 13

exterior algebras. The map f : g → n = g/Rexp g, induces f
∗ : Λ∗(n∗) → Λ∗(g∗). This

induces a map between the Lie group cohomology of N and that of G, which we may
still call f∗ : H2(N,R) → H2(G,R).

Our aim is to show that the image of f∗ contains ω. Let {e1, e2, . . . en} be a basis
for g = Lie(G), and F ∈ g̃ the central element with L = {exp(tF ) : t ∈ R}. Let
{ω1, ω2 . . . , ωn} be the basis for Λ1(g∗) dual to {e1, e2, . . . en}, and for 1 ≤ i < j ≤ n,
ωi,j = ωi ∧ ωj , the standard basis for Λ2(g∗). Write ω =

∑
αi,jωi,j .

As a central extension, recall that the defining brackets in g̃ ≃ g⊕RF are

[(ei, α)(ej , β)]g̃ = ([ei, ej ]g, αi,j)

From this it is clear that whenever αi,j ̸= 0 it holds that ei, ej /∈ u: since the distortion

of exp((X, 0)) ∈ G̃ is at least as large as the distortion of exp(X) ∈ G, we have ei ∈
u ⇒ (ei, 0), ([ei, ej ], 0) ∈ ũ. Therefore if αi,j ̸= 0 then

ei ∈ u ⇒ [(ei, 0), (ej , 0)]g̃ − ([ei, ej ]g, 0) = αi,jF ∈ ũ

Since we assume k < ∞, we may conclude ei, ej /∈ u whenever αi,j ̸= 0. For X ∈
g, denote X̄ := f(X) ∈ n its image under the projection. We may assume the set
{Ē1Ē2, . . . , Ēm} is a basis for n, and ω̄i the dual basis for n

∗. The above claim says that
αi,j ̸= 0 ⇒ i, j ≤ m, and we may consider ω̄ =

∑
αi,j ̸=0 αi,jω̄i,j ∈ n ∧ n. Functoriality

implies that ω̄ is a non-trivial cohomology class. Consider the central extension ñ
generated by ω̄, and let F̄ be the corresponding central element in ñ. It remains to
show that F̄ ∈ n̄k. This is a result of the fact that we can define the Lie algebra
homomorphism f̃ : g̃ → ñ by (ei, 0)g̃ 7→ (Ēi, 0)ñ and F = (0, 1)g̃ 7→ F̄ = (0, 1)ñ. □

3.E. An application: a lower bound on the Dehn function of a central product
of Abels’ second group. In this section we elaborate on Example 1.5, in which we
present a group for which our theoretical contribution is practical: applying Corollary B
to this group improves on the known lower bound obtained by Theorem 1.6. The group
is a central product of Abels’ second group with a model filiform nilpotent group of
class 4. Remark 3.16 provides some intuition for its construction, which is a variation
on [Cor08, Examples 4.1, 4.2], using [CT17, Example 1.5.4] as a building block.

Remark 3.15. The example we construct is of dimension 13, and we do not claim the
dimension is minimal for the properties we need. Upon establishing the list of Dehn
functions for completely solvable groups of dimensions 4 and 5, we found that in the
few cases where the distortion in central extensions tool was useful, the groups were in
fact in (C1). So the minimal dimension for such an example is bounded below by 6.

Let g2 be the Lie algebra corresponding to the group U ⋊ A presented in [CT17,
Example 1.5.4]. The Lie algebra u = Lie(U) is given by:

u :=⟨X1, X2, X3, X4, X5, X6, X9, X12⟩

with the nonzero brackets

[X1, X2] = X4, [X1, X3] = X5, [X2, X3] = X6,

[X1, X6] = X9, [X3, X4] = X12, [X2, X5] = X9 +X12.

(The indices of the generators indeed skip 7, 8, 10 and 11: this is reminiscent to the
fact that u is the quotient of the free 3-step nilpotent Lie algebra on 3 generators
{X1, X2, X3} by the ideal generated by [Xi, [Xi, Xj ]] for i ̸= j ∈ {1, 2, 3}).
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Let a := Lie(A) be the abelian Lie algebra on two generators ⟨T1, T2⟩, and g2 := u⋊a
with the following non-zero brackets:

[T1, X1] = −X1, [T1, X3] = X3, [T1, X4] = −X4, [T1, X6] = X6,

[T2, X1] = −X1, [T2, X2] = 2X2, [T2, X3] = −X3, [T2, X4] = X4, [T2, X5] = −2X5,

[T2, X6] = X6

Let fil = ⟨E1, E2, E3, E4⟩ be the 4-dimensional filiform algebra, with non-zero brackets
[E1, E2] = E3, [E1, E3] = E4. Define g3 := g2 × fil. The centre of g3 is the product of
the centres of the factors, which is ⟨X9, X12, E4⟩. Let z be the 1-dimensional subspace
generated by the diagonal of the centre Z := X9 +X12 + E4.

Our example is the simply connected Lie group G whose Lie algebra is g := g3/z. We
can write it in the basis

⟨X1, X2, X3, X4, X5, X6, X9, X12, T1, T2, E1, E2, E3⟩,

with all non-zero brackets exactly as in g3, except for [E1, E3] = −X9 −X12.
The group G admits the following properties:

• ρ0(G) = G, i.e. G is in (C0).
• U = RexpG and the short exact sequence

1 → U → G→ G/U → 1

does not split. In particular G is not in (C1).
• G is not generalized standard solvable.
• G does not have a nonabelian nilpotent retract.
• G has a polynomially bounded Dehn function.
• G admits a cubically distorted central extension.

We supply short reasoning for the above claims. Due to the high dimension of this
group, we do not give the details of the computations. The reader may consult Sec-
tion A.2 for the relevant techniques.

The nilradical of g is u + fil/⟨Z⟩, it splits with complement a acting with only real
eigenvalues. Therefore G is in (C0).

The exponential radical is u. The quotient g/u is R2× heis, where in the above basis
heis = ⟨E1, E2, E3⟩/u is the Lie algebra of the 3-dimensional real Heisenberg group with
central element E3 · u. If u did split, we would have g = u ⋊ m with m isomorphic to
R2 × heis and its action on u would factor through the quotient. In particular, the
central element of heis in m, which is central in m, would act trivially on u. Therefore
the centre of g would intersect m nontrivially. It can be verified however that the centre
of g is exactly ⟨X9, X12⟩ ⊂ u.

If, towards contradiction, G was generalized standard solvable with nilpotent quotient
N , then n := Lie(N) would have to be a quotient of m = R2×heis (recall G/Rexp(G) is
the largest nilpotent quotient of G). Therefore if n is nonabelian, it must contain heis
and the same argument as above yields a contradiction. This moreover proves that G
does not retract to a nonabelian nilpotent group. If on the other hand N was abelian,
then by Proposition 2.5 G would have to split over the exponential radical, which is not
the case. So G is not generalized standard solvable.

One may check that G does not admit the SOL or 2-homological obstructions, and
therefore has a polynomial Dehn function [CT17, Theorem E].

It is easily observed that G3 (the Lie group corresponding to g3) is a central extension
of G. The generator of the extension is Z = X9 +X12 + E4, which is in C3g3 but not
in C4g3, i.e. cZ = 3. By Theorem A, ⟨Z⟩ is n3-distorted in G1 := ρ1(G), hence by
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Corollary B, the Dehn function of G is bounded from below by n3. A direct computation
of the second cohomology group proves that we cannot improve this lower bound using
distortion in other central extensions.

To the best of our knowledge, the sharpest evaluation of the Dehn function of G
prior to our work is given by Theorem 1.6. Concretely, it is easy to check that ρ1(g) =
u ⋊ (a × heis), where the only difference in brackets from g is that [E1, E3] = 0. In
particular, the action of a × heis on the exponential radical u is the same as in g and
so the corresponding Lie group G1 = U ⋊ (A×Heis) is generalized standard solvable in
the sense of [CT17, Section 10.H]. Theorem 1.6 yields:

n3/ loge(n) ⪯ δG(n) ⪯ n4 · loge(n).

where e ≤ 8 is twice the bound on the exponent of δG.
Finally, we remark that Kill(u)0 ̸= 0, so the upper bound of n4 cannot be improved to

n3 using only 3.11. Moreover, ρ1(G) is not generalized tame as can be seen by drawing
the weight diagram, and using [CT17, Proposition 4.B.5].

Remark 3.16. The logic behind the construction is extracted from the discussion at
the end of Section 3.D. We are looking for a group with quite a few properties: it
must be completely solvable, must not split with a nilpotent quotient (in particular
it should not be generalized standard solvable, hence not in (C1)), its Dehn function
must be polynomial, and its distorted central extensions must be necessary for giving
a lower bound on its Dehn function (so for example it must not admit a left-invariant
nonpositively curved Riemannian metric). In low dimensions and for the groups of class
(C0), the property of not splitting over the exponential radical is the hardest to come by.
Cornulier’s construction [Cor08, Examples 4.1, 4.2] give such groups, and hints at how
to obtain them in general. We vary his building blocks in order to assure that the group
admits the other desired properties; the challenge of escaping the SOL obstruction is
the main reason we chose [CT17, Example 1.5.4] as a building block for our example.

4. The solvable Lie groups of low dimensions and their QI-invariants

In Appendix A we list all indecomposible completely solvable groups of exponential
growth of dimensions 4 and 5, and compute their cone dimension and Dehn functions.
The results are organized in tables: cone dimension in Tables 1, 2, Dehn function in
Tables 4 and 5.

We use the results of our computations in the proof of the QI-rigidity of Sol5 (The-
orem C, see proof in Section 5). In a different paper [GP24, Section 5] we use them
in a slightly different manner, namely in order to find groups that share the same cone
dimension and Dehn function. As two prominent quasiisometric invariants, one may
expect such a list could find more applications in the context of the quasiisometric
classification, at least in low dimensions.

We do not introduce new methods: our computations are based mostly on Cornulier
and Tessera [CT17], who develop various criteria for estimating Dehn functions. Their
work is remarkable in its completeness: for example, it allows us to determine all Dehn
functions within the class of groups we considered.

Still, the computations themselves are technically demanding and require familiarity
with [CT17] as well as with other works. With the aim of making this paper as self-
contained as possible, along with the results we supply in the appendix short descriptions
and examples for each criterion. These should allow the readers to familiarize themselves
with the relevant definitions and techniques, and to reproduce the computations.
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β
0−1 − 1

2

QI to R2 ⋊ SL(2,R)

1

QI to SU(2, 1)
QI-rigid

QI-classified for 0 < β < 1 [CPS17]

δG ≍ exp (SOL obstruction holds) δG linear

Figure 1. Together with G4,8, the groups in the Gβ
4,9 family are deter-

mined by the parameter β ∈ (−1, 1]. The three classes of groups defined
by β > 0, β = 0 and β < 0 are quasiisometrically distinct. The groups
with β < 0 (with exponential Dehn function) have not been classified up
to quasiisometry so far.

Remark 4.1. The Dehn functions for all solvable Lie groups of dimension up to 5 and
polynomial growth follow from those of nilpotent groups of these dimensions, which were
completely determined by Pittet [Pit97, Proposition 7.1]. We restrict our computations
to the groups of exponential growth in this paper.

4.A. Some Particular Families. We discuss in detail two particular families, to indi-
cate where some progress would be needed to complete their quasiisometry classification.
We will say that a given completely solvable Lie group G is QI-rigid within (C0) if any
group in (C0) quasiisometric to it is isomorphic to G, and that a class G of groups is
QI-complete within (C0) if any group in (C0) quasiisometric to a group in G is isomorphic
to a group in G. All notions and notations in the discussion below could be found in
Appendix A.

4.A.1. G4,8 and the Gβ
4,9 family. Together with G4,8, the groups of the form Gβ

4,9 may be
represented on a line segment, so that the eigenvalues of e4 acting on the abelianization
of Rexp g4,9 are 1 and β ∈ (−1, 1] (see Figure 1.) Note that G4,8 is the limit case
β = −1. The group G1

4,9 is the maximal completely solvable subgroup of SU(2, 1); as

such, it is QI-rigid within (C0); See [GP24, Appendix A]. When β > 0 the group Gβ
4,9 is

hyperbolic; the fact that the {Gβ
4,9 : β > 0} is QI-complete within (C0) can be deduced

from [KLDNG22], and the internal QI-classification is done by [CPS17]. The group G0
4,9

is not in (C1) and its cone dimension is 2. This is the only group in the family with this
cone dimension. When β < 0 the cone dimension is again 1 and the SOL obstruction
holds, so that the Dehn function is exponential.

The group G
−1/2
4,9 is of particular interest, since it is quasiisometric to G = SL(2,R)⋉

R2; precisely it is isomorphic to its subgroup ANR, where R denotes the radical R2

and L = KAN denotes the Levi factor SL(2,R) in the Levi decomposition LR of G.
De la Harpe [dlH00, IV.25.(viii)] observed that the lattices in G are nonuniform and
asked whether there are finitely generated groups quasiisometric to G.

Question 4.2. Can one describe the space QI(Gβ
4,9, G

β′

4,9) for β, β
′ < 0?

In the special case β = β′ = −1/2, this amounts to the knowledge of the group

of self-quasiisometries of G
−1/2
4,9 and would likely shed light on de la Harpe’s question

mentionned above.

4.A.2. The Gα,β
5,33 family. Groups of the form Gα,β

5,33 may be represented on a plane, so

that the three principal weights in the basis of Hom(a,R) dual to (e4, e5) are (1, 0),
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β

α
(1, 0)

δG ≍ exp

(−1,−1)

(See Section 5)

QI-classified [BR23]

(1, 0)

(0, 1)

δG(n) ≍ n2

δG(n) ≍ n2

AW condition holds;

Coneω Gα,β
5,33 contractibleπ2(Coneω Gα,β

5,33) ̸= 0 [Cor20]

Figure 2. The groups in the Gα,β
5,33 family are determined by the coor-

dinates (α, β) of the third principal weight in the above weight diagram,

so that one point in the plane represents a group; Gα,β
5,33 and Gα′,β′

5,33 are

isomorphic if and only if {α, β} = {α′, β′}. The group Gα,β
5,33 with α = 0 is

decomposable. The groups in the three areas: the bottom-left quadrant,
its boundary (bold-faced), and their complement (to the top and right)

are quasiisometrically distinct. G−1,−1
5,33 is the group Sol5 discussed in

Section 5.

(0, 1), and (α, β). See Figure 2. This family is interesting because it exhibit various
behaviours.

If α or β is strictly positive, then Gα,β
5,33 has the Azencott-Wilson criterion; as such, it

has a quadratic Dehn function. If moreover α+β = 1, then Gα,β
5,33 contains G

1,1
4,5 (namely

the AN subgroup of KAN = SO(4, 1)) as a codimension 1 subgroup. Bourdon and
Rémy recently used this fact to compute critical exponents in Lp-cohomology for the
groups within the line α + β = 1; they obtain that two such groups are quasiisometric
if and only if they are isomorphic [BR23, Theorem 1].

If α and β are nonpositive, on the other hand, then 0 lies in the convex hull of the
set of principal weights, which changes drastically the geometry. If α or β is zero, then

Gα,β
5,33 has the SOL obstruction (as 0 lies in the segment between two principal weights),

therefore its Dehn function is exponential. If α and β are both negative, then the Dehn
function is again quadratic, as we compute in Example A.19. However, we can still

distinguish the groups Gα,β
5,33 with α, β < 0 from the other ones using the asymptotic

cone: π2(Coneω G
α,β
5,33) is nontrivial for α, β < 0 (See [Cor14, p.9]; the asymptotic cone

is T3
D(3)) while when α or β are positive the asymptotic cone is contractible (since it

is bilipschitz to a CAT(0) space). The group G−1,−1
5,33 is the only unimodular group in

the G5,33 family; it is in Peng’s class (P) (See Definition 5.1) and the description of its
self-quasiisometries is given by [Pen11a, Pen11b]. See Section 5 for more on Peng’s class

and the group G−1,−1
5,33 .
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5. Groups quasiisometric to Sol5 : proof of Theorem C

Eskin, Fisher and Whyte have conjectured that the class of virtually polycyclic groups
should be quasiisometrically complete within finitely generated groups [EF10, Conjec-
ture 1.2]. The first evidence for this came from the work of Shalom, who proved that
any finitely generated group quasiisometric to a polycyclic group has a finite index
subgroup with nonvanishing first Betti number [Sha04]. Since every polycyclic group
contains a finite-index subgroup which is a uniform lattice in a simply connected solv-
able Lie group, the quasiisometry classification conjecture for completely solvable Lie
groups [Cor18, Conjecture 19.25] would complement [EF10, Conjecture 1.2] in that it
would complete the internal QI-classification of polycyclic group. (Note that when we
restrict attention to the smaller class of virtually nilpotent groups, we face a similar
picture, but while the quasiisometric classification of simply connected nilpotent Lie
groups is still open, Gromov’s polynomial growth theorem [Gro81] can be taken as a
replacement of the above conjecture of Eskin, Fisher and Whyte.)

Peng [Pen11a, Pen11b] made significant progress towards both conjectures. To state
her theorems we make the following definition.

Definition 5.1. Let G be a standard solvable group. We say that G is of class (P) if
the following holds:

(1) RexpG is equal to the nilradical of G
(2) RexpG is abelian
(3) G/RexpG is abelian
(4) G is unimodular.

Theorem 5.2 ([Pen11b, Corollary 5.3.7]). If two groups of class (P) are quasiisometric,
then they are isomorphic.

Theorem 5.3 ([Pen11b, Corollary 5.3.9]). If a finitely generated group is quasiisometric
to a group of class (P), then it is virtually polycyclic.

Remark 5.4. The statement of Theorem 5.2 in [Pen11b] is different and involves real
parts of Jordan form of the adjoint action. This is because Peng’s definition of class (P)
is more general: the groups are not assumed to be standard solvable, and in particular
need not be in (C0) a priori. With the current formulation it is easy to see that [Pen11b,
Corollary 5.3.7] implies [Pen11b, Corollary 5.3.8].

The completely solvable groups of class (P) and dimension less or equal 5 are G3,4,

G−2
4,2, G

−(1+δ)/2,−(1−δ)/2
4,5 for 0 ⩽ δ < 1, Gα,β,γ

5,7 with α + β + γ = 1, G−1−δ,−1+δ
5,9 with

0 ⩽ δ < 1, G−3
5,11, G

−1
5,15, and G

−1,−1
5,33 , which is the group Sol5.

Using Peng’s rigidity theorem and our Dehn functions computations (Appendix A),
we can prove that the finitely generated groups quasiisometric to Sol5 are almost lattices
in this group.

Proposition 5.5. Let Γ be a finitely generated group quasiisometric to Sol5. Then there
is a finite-index subgroup Γ0 in Γ and a homomorphism Γ0 → Sol5 with finite kernel
and closed co-compact image.

Remark 5.6. The group Sol5 does have lattices - see Remark 5.7 below.

Remark 5.7. Passing to a finite index subgroup is necessary, as the following example
shows. Let K be a number field of degree 3 with Galois group Σ = Sym3 and consider
the group Λ = PSL(2,OK), which embeds as a non-uniform Q-rank one lattice in
X = H2 × H2 × H2. The group Σ operates by automorphisms on Λ; these extend as
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conjugations in G = Isom(X) by maps of H2 ×H2 ×H2 permuting the three factors. If
H is a horosphere bounding a cusp in the quotient Γ\X, then by [Pra73, Proposition
2.1(3)], Λ⋊Σ intersects Isom(H) in a uniform lattice of the latter group; let us denote this
lattice by Γ. One may write Γ = Γ0 ⋊Σ, where Γ0 is a lattice in Sol5 < Isom(H). Thus
Γ is quasiisometric to Sol5. However, if there was ϕ : Γ → Sol5 a group homomorphism
with finite kernel, then kerϕ would contain Σ (which is torsion), but intersect Γ0 trivially,
since Γ0 < Sol5 has no non-trivial finite subgroup; it would follow that kerϕ = Σ and Γ
would split as a direct product, which is not the case.

Proof. The proof is done by exhaustion. The group Sol5 is of class (P), so that by
Peng’s rigidity theorem 5.3 we know that Γ is virtually polycyclic; let G be a simply
connected solvable group such that there exists a finite-index subgroup of Γ that surjects
with finite kernel onto a uniform lattice in G [Rag72, Theorem 4.28]. We know that G
is quasiisometric to Sol5, so that dimG = 5 and conedimG = 2. Therefore G is among
the following list of groups:

G0,β
5,19, G

1,β
5,19, G

0
5,20, G

1
5,20, G5,27, G

1
5,28, G

1
5,30, G

0
5,32, G

α
5,32, G

α,β
5,33, G5,34, G5,35,

G5,36, G5,37, G
α
4,2 ×R, G4,4 ×R, Gα,β

4,5 ×R, G4,7 ×R, G4,8 ×R, G0
4,9 ×R, Gβ

4,9 ×R.

We can rule out most of the groups in this list since they are not unimodular. The
unimodular ones are

G1,−2
5,19 , G

0
5,20, G

−1,−1
5,33 , G0,−2

5,35 , G
−2
4,2 ×R, Gα,β : α+β=−1

4,5 ×R, G4,8 ×R.

By our work in Tables 4-5 all these except G−1,−1
5,33 ≃ Sol5 have exponential Dehn func-

tion; the Dehn function of G is quadratic, since it is quasiisometric to Sol5 (by [Dru04,
Theorem 1.1], Leuzinger-Pittet [LP04, Theorem 2.1], or the computation in Exam-
ple A.19, using Cornulier and Tessera’s [CT17, Theorem F]). So G must be isomorphic
to Sol5. □

Remark 5.8. According to Peng [Pen11b, Corollary 5.3.11], a completely solvable group
quasiisometric to Sol5 must be a semidirect product of the form R2 ⋉R3. This would
allow to rule out some of the groups above without estimating Dehn functions, but it
does not rule out Gα,1−α

4,5 ×R.

Proposition 5.9. Let G be a completely solvable group, quasiisometric to Sol5. Then
G is isomorphic as a Lie group to Sol5.

Proof. The group Sol5 is amenable and unimodular, hence geometrically amenable, and
geometric amenability is invariant under quasiisometry, so that G must be geometrically
amenable (See §11 in [Tes08] and especially Corollary 11.13 therein). Moreover, since G
is completely solvable, it is geometrically amenable if and only if it is unimodular. So G
is unimodular as well, and belongs to the list of groups already considered in the proof
of Proposition 5.5. The end of the proof is the same as that of Proposition 5.5. □

Appendix A. Computing Dehn Functions of Completely Solvable Groups
up to Dimension 5

We begin by presenting the format of the tables and some basic terminology and
context. The tools for Dehn function computations are presented in Section A.1, and
elaborated examples with detailed explanations on the computations are given in Sec-
tion A.2.

By dimension we mean the dimension of the Lie algebra over R; for the simply
connected solvable Lie groups this is also the asymptotic Assouad-Nagata dimension
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([HP13]) so that, for instance, the family of completely solvable groups of dimension 5
is QI-complete within (C0).

By cone dimension, we mean the covering dimension of any asymptotic cone; it is
given by Cornulier’s formula [Cor08], and for simply connected solvable Lie groups, it
is exactly the codimension of the exponential radical. The cone dimension is obviously
a quasiisometry invariant, so that the first refinement of the simply connected solvable
groups in QI-complete families is the ordered pair of positive integers

(conedim, dim).

The cone dimensions of Lie groups up to dimension 4 was computed and tabulated by
Kivioja, Le Donne and Nicolussi Golo [KLDNG22, Table 1]. The same authors also
listed the simply connected solvable Lie groups G of polynomial growth of dimension 5,
and their associated ρ0(G) (that they call the real shadow of G).

The solvable Lie groups (or more precisely the real solvable Lie algebras) of dimensions
4 and 5 were completely classified by Mubarakzyanov [Mub63]; the list is also available
in the more accessible [PSWZ76]. We list in Table 1 the groups G in (C0) and of
dimension 2 to 4 and of exponential growth that do not split in direct product and their
associated ρ1(G) in (C1) (the cone dimensions can be found in [KLDNG22]). In Tables
2–3 we continue the list in dimension 5 to all indecomposable simply connected solvable
groups of exponential growth G, and compute their associated ρ0(G); we also compute
ρ1(G) and list the cone dimension. There are 39 families of indecomposable real five-
dimensional solvable Lie algebras, including 18 with parameters. In [Mub63] they are
named g5,i for 1 ⩽ i ⩽ 39. For 1 ⩽ i ⩽ 7, g5,i is nilpotent and for i ∈ {14, 17, 18, 26} and
certain particular values of the parameters, the corresponding group has polynomial
growth; we deliberately exclude them from our tables, since the computation of ρ0 was
done for them in [KLDNG22, Table 3].

In order to ease the determination of whether a given irreducible simply connected
solvable group belongs to (C0) or (C1), we always list the group in the rightmost possible
column. For instance for some group G in (C1), the column below G and (in Tables 2–3)
the column ρ0(G) will be left blank, only the column ρ1(G) will be filled with G.

The structure of the Lie algebra is given in [Mub63] and [PSWZ76] as a list of nonzero
brackets; however this is not quite convenient when it comes to computing ρ1(G), and
checking our computations. It turns out that in all cases but two, namely G5,38 and
G5,39, the nilradical is split, and the Lie algebra decomposes as n⋊R or n⋊R2, where

the Lie algebra n of the nilradical can be either Rd for d ∈ {1, . . . , 4}, the Lie algebra
heis of the Heisenberg group, the Lie algebra fil of the 4-dimensional filiform group, or
a product of heis with an abelian ideal of dimension 1. We fix bases (e1, . . . , ed) for all
the Lie algebras among the former, in the following way: (e1, e2, e3) is a basis of heis in
which [e1, e2] = e3 and e3 is central, (e1, e2, e3, e4) is the basis of fil in which [e1, e2] = e3,
[e1, e3] = e4 and e4 is central; when we write the product R× heis the nonzero bracket
is (e2, e3) = e4 while when heis×R the nonzero bracket is (e1, e2) = e3. To denote the
torus of derivations, we write ∆(b1, . . . ,br) for a derivation of n which has diagonal
blocks b1, . . . , br. By block we mean one of the following:

• a scalar block corresponding to an eigenspace of eigenvalue λ ∈ R which we
write bi = (λ).

• a complex scalar block corresponding to(
σ τ
−τ σ

)
which we write (σ ± iτ).
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• a non-scalar irreducible Jordan block of a generalized eigenspace of eigenvalue
λ, which we write (λs) where s is the dimension, e.g. (22) corresponds to the
block (

2 1
0 2

)
Finally,

g = n⋊ {∆(b1, . . . ,bri)}i
denotes the semidirect product of n by the derivations listed. For a few real Lie algebras
of dimension 5, the description above is not possible and we provide it separately.

The parameters in our table are in the same range4 and order as in [PSWZ76],

who took the list in [Mub63], but denoted Aa,b,c...
5,i the corresponding algebras with

parameters; however we used Greek letters for the parameters, and sometimes used
different letters; this is in order to “type” the parameters, for instance τ always denotes
an imaginary part and ϵ is a sign. We normalize as much as possible to reduce the
number of parameters when applicable, but we did not reparametrize.

Remark A.1. We did not find the Lie algebra named s5,26 in [vW14, p.237], for the
value of the parameter a = 1, in [Mub63] nor in [PSWZ76]. We named the corre-
sponding group S1

5,26 in our table; that is our only departure from the taxonomy of

Mubarakzyanov. In addition, there is an entry in [PSWZ76], named A5,40 and marked
there as solvable, however it turns out that it has a nontrivial Levi decomposition;
this is sl(2,R) ⋉ R2 with the tautological representation of sl(2,R). There are two
quasiisometry classes of Lie groups with this Lie algebra:

(1) The simply connected Lie group

˜SL(2,R)⋉R2

whose QI type is that of R×G4,8;

(2) The connected Lie group SL(2,R) ⋉ R2, whose QI type is that of G
−1/2
4,9 ; we

discuss this further in subsection 4.A.

Since they are not solvable, we do not list these groups. Otherwise, we found a few
less serious inconsistencies: in [PSWZ76] one should not have a parameter c in the

definition of G5,8; in G
b,c
5,9 we found the condition bc ̸= 0 to be missing in both [Mub63]

and [PSWZ76]; in the definition of Gp,ϵ
5,26, resp. of G

a,b
5,33 one should assume p > 0, resp.

a ⩽ b to avoid redundancy.

Remark A.2. The exponential radical of G0
5,20 is not split. This group G

0
5,20 is the group

named G in [Cor08, Example 4.2]. There are no completely solvable groups for which
the exponential radical does not split in dimension four, so that Cornulier’s example is
minimal for the dimension. It follows from our study that G0

5,20 is the only such group
in dimension 5, so the six-dimensional Q-algebraic group with no Q-split torus that has
a non-split exponential radical given in [Cor08, Example 4.1] in (C0) is minimal for the
dimension among groups with all these properties.

A.1. Dehn Functions. In tables 4–5 we compute, as accurately as we can, the Dehn
functions of the groups listed in Tables 1-3. To this end we used the following list of
criteria:

• Gromov-hyperbolicity [Hei74];

4In a few cases, a relevant range for the parameters is not clearly indicated in [PSWZ76], but the
invariants given there can be used to determine one. We provide explicit ranges here.
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• Azencott-Wilson criterion [AW76];
• Standard solvability [CT17];
• SOL obstruction [CT17];
• 2-homological obstruction [CT17];
• Vanishing of the zero weight subspace in the Killing module [CT17];
• Bound for generalized tame groups [CT17];
• The distortion of all central extensions as Lie group (Section 3.B).

To the best of our knowledge, this list exhausts the general, or algorithmic, criteria for
estimating Dehn functions. For each group the table states how we obtain this Dehn
function, so our computations could be easily verified. We now explain how we obtain
our estimates based on the above criteria.

• The Azencott-Wilson criterion checks whether a Lie group acts simply transi-
tively on a non-positively curved Riemannian manifold [AW76]. In particular
such groups have Dehn function at most quadratic.

• The definitions of standard solvable, SOL obstruction and 2-homological obstruc-
tion are given by Cornulier and Tessera. They prove the following result for a
completely solvable group G ([CT17], Theorem E):

– G has exponential Dehn function if and only if it admits either the SOL
obstruction or the 2-homological obstruction. Otherwise its Dehn function
is polynomially bounded.

– If G does not satisfy the SOL or 2-homological obstruction and is standard
solvable, then it has at most cubic Dehn function.

The group G is generalized tame if it can be written as G = U ⋊N , N nilpotent
compactly generated with some element c ∈ N acting as a compaction on U
(see [CT17, Section 6.E]). Theorem 6.E.2 of [CT17] states that in this case, the

Dehn functions of G and N are almost equivalent: δN ≼ δG ≼ δ̂N , where δ̂N
is any regular function larger than δN (see Theorem 1.6 for the definition of a
regular function). In all cases of completely solvable groups of dimensions 4 and

5, δ̂N can be taken to equal δN so δG ≍ δN .
• For standard solvable groups there are two ways of concluding they have at most
quadratic Dehn function. The first is using Theorem D in [CT17] stating that for
some strong version of standard solvable groups, not having the SOL obstruction
implies a quadratic upper bound on the Dehn function. The second is using
Theorem 10.E.1 in [CT17], which involves computing the zero weight subspace
in the Killing module. Finally, if a standard solvable group has a co-dimension
1 exponential radical and the group does not satisfy the SOL obstruction, it is
hyperbolic ([CT17], Corollary E.3.a).

• Section 3.B allows to derive Dehn function estimates for a group G using its
possible central extensions. The 2-cohomology of a group classifies its central
extensions. We compute it, and for each possible extension check its distortion.
In the tables we list the names of the cohomology classes that give the maximal
degree distortions. The name of a cohomology class is given with respect to the
ordered basis in which the group is presented in tables 1–2.

For readability we only write down the Dehn function and the Reason column, that
depicts which criteria were used to concluded the Dehn function. The reason is enough
in order to completely determine which criteria led us to this decision. For example in
G5,10 we write n4 D.Ex {ω15, ω23}. This means that the distorted central extensions
corresponding to the cohomology classes of ω15 and ω23 are n4 distorted and that there
are no higher degree distorted extension; here ωij is dual to ei ∧ ej in the given basis of
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G ρ1(G) structure of g = Lie(G) conedim

- A2 R⋊∆(1) 1
G3,2 G3,3 R2 ⋊∆(12) 1
- G3,3 R2 ⋊∆(1, 1) 1
- G3,4 R2 ⋊∆(1,−1) 1
- Gα

3,5 R2 ⋊∆(1, α), −1 < α < 1, α ̸= 0. 1

Gα
4,2 G1,α′

4,5
(†) R3 ⋊∆(12, α), α ̸= 0. 1

- G4,3 R3 ⋊∆(1, 02) 3

G4,4 G1,1
4,5 R3 ⋊∆(13) 1

- Gα,β
4,5 R3 ⋊∆(1, α, β), 1

−1 ⩽ α ⩽ β ⩽ 1, αβ ̸= 0.
G4,7 G1

4,9 heis⋊∆(12, 2) 1
- G4,8 heis⋊∆(1,−1, 0) 1
G0

4,9 R×G3,3 heis⋊∆(1, 0, 1). 2

- Gβ
4,9 heis⋊∆(1, β, 1 + β), −1 < β ⩽ 1, β ̸= 0 1

(†) α′ may differ from α.
Table 1. The completely solvable, indecomposable Lie groups of expo-
nential growth and dimension d, 2 ⩽ d ⩽ 4.

the Lie algebra. The fact that the group is not standard solvable and does not admit
the Azencott-Wilson criterion follows from these facts.

In the Reason column, we use the following abbreviations for our reasoning:

• SOL: G admits the SOL obstruction.
• Hyp: G is standard solvable with co-dimension 1 exponential radical and does
not admit the SOL obstruction.

• not Hyp: a sufficient condition to check non-hyperbolicity is when the cone
dimension is larger than 1.

• ρ1: The Dehn functions of G and ρ1(G) are related by Cornulier’s Theorem 2.9
and Proposition 3.7.

• ρ1 = ρ0: When ρ1 = ρ0 then G is quasiisometric to ρ1(G) and all Dehn functions
equal.

• A-W: G admits Azencott-Wilson criterion, and so its Dehn function is either
linear (if and only if G is hyperbolic), or quadratic.

• nk D.Ex.: The group admits a nk-distorted central extension, and does not
admit extensions of higher degree distortions.

• C-T: A group that is standard solvable and does not admit SOL or 2-homological
obstructions has at most cubic Dehn function.

• K: A standard solvable group without SOL or 2-homological obstruction can
admit the Killing module criterion, by which its Dehn function is at most qua-
dratic.

• GT: If G = U ⋉ N is generalized tame, then the Dehn function of G can be
estimated from the Dehn function of its largest nilpotent quotien
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G ρ0(G) ρ1(G) structure of g = Lie(G) conedim(G)

- - Gα,β,γ
5,7 R4 ⋊ diag(1, α, β, γ), 1

−1 ⩽ γ ⩽ β ⩽ α ⩽ 1, αβγ ̸= 0.
- - Gγ

5,8 R4 ⋊∆(02, 1, γ), 3

−1 ⩽ γ ⩽ 1, γ ̸= 0.

- Gβ,γ
5,9 G1,β,γ

5,7 R4 ⋊∆(12, β, γ), βγ ̸= 0, β ⩽ γ. 1

- - G5,10 R4 ⋊∆(03, 1) 4

- Gγ
5,11 G1,1,γ

5,7 R4 ⋊∆(13, γ), γ ̸= 0. 1

- G5,12 G1,1,1
5,7 R4 ⋊∆(14) 1

Gα,0,1
5,13 - R2 ×Gα

3,5 R4 ⋊∆(1, α,±i), α ̸= 0. 3

Gα,β,τ
5,13 - Gα,β,β

5,7 R4 ⋊∆(1, α, β ± iτ), 1

−1 ⩽ α ⩽ 1, αβτ ̸= 0.
Gα

5,14 - G1
5,8 R4 ⋊∆(02, α± i), α ̸= 0. 3

- G0
5,15 G1

5,8 R4 ⋊∆(02, 12) 3

- Gβ
5,15 G1,β,β

5,7 R4 ⋊∆(12, β2), β ̸= 0. 1

G0,τ
5,16 - R2 ×G3,3 R4 ⋊∆(±iτ, 12), τ ̸= 0. 3

Gβ,1
5,16 - G1,β,β

5,7 R4 ⋊∆(12, β ± i), β ̸= 0. 1

Gτ,0,1
5,17 - R2 ×G3,3 R4 ⋊∆(±i, 1± iτ), τ ̸= 0. 3

Gτ,α,β
5,17 - G

1,β/α,β/α
5,7 R4 ⋊ (α± i, β ± iτ) 1

Gα
5,18 G1

5,11 G1,1,1
5,7 R4 ⋊∆((α± i)2), α ̸= 0 1

- - G0,β
5,19 (heis×R)⋊∆(1,−1, 0, β), β ̸= 0 2

- G1,β
5,19 R×G1,β

4,5 (heis×R)⋊∆(1, 0, 1, β), β ̸= 0 2

- - Gα,β
5,19 (heis×R)⋊∆(1, α− 1, α, β), 1

(α− 1)β ̸= 0.
- G0

5,20 R×G4,8 (heis×R)⋊∆(1,−1, 02) 2

- G1
5,20 G1,1

5,19 (heis×R)⋊∆(1, 0, 12) 2

- Gα
5,20 Gα,α

5,19 (heis×R)⋊∆(1, α− 1, α2), α ̸= 1. 1

Table 2. The simply connected, real, indecomposable, solvable Lie
groups of exponential growth and dimension five (to be continued on
Table 3).
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G ρ0(G) ρ1(G) structure of g conedim(G)

- G5,21 G2,1
5,19 (R× heis)⋊∆(13, 2) 1

- - G5,22 (R× heis)⋊∆(1, 02, 0) 4

- Gβ
5,23 G2,β

5,19 (heis×R)⋊∆(12, 2, β), β ̸= 0 1

- Gϵ
5,24 G2,2

5,19 (heis×R)⋊ ϕϵ5,24, see Example A.5. 1

G1,0
5,25 - Heis×A2 (heis×R)⋊∆(±i, 0, 1) 4

Gβ,α
5,25 - G

2,β/α
5,19 (heis×R)⋊∆(α± i, 2α, β), α ̸= 0 1

- S1
5,26 G2,2

5,19 (heis×R)⋊∆(1, 1, 22) 1

Gα,ϵ
5,26 S1

5,26 G2,2
5,19 (heis×R)⋊ ϕα,ϵ5,26, 1

α > 0, ϵ = ±1; see Example A.6.

- G5,27 R×G1,1
4,5 (heis×R)⋊ ϕ5,27; see Example A.7 2

- G1
5,28 R×G1,1

4,5 (R× heis)⋊∆(12, 0, 1) 2

- Gα
5,28 Gα,1

5,19 (R× heis)⋊∆(12, α− 1, α), α > 1 1

- G5,29 G1
5,8 (R× heis)⋊∆(02, 1, 1) 3

- - G−1
5,30 fil⋊∆(1,−2,−1, 0) 1

- - G0
5,30 fil⋊∆(1,−1, 0, 1) 1

- G1
5,30 R×G1

4,9 fil⋊∆(1, 0, 1, 2) 2
- - Gα

5,30 fil⋊∆(1, α− 1, α, α+ 1) 1
- G5,31 G2

5,30 fil⋊∆(12, 2, 3) 1

- G0
5,32 R×G1,1

4,5 fil⋊∆(0, 1, 1, 1) 2

- Gα
5,32 R×G1,1

4,5 fil⋊ ϕα5,32; see Example A.8 2

- - G0,β
5,33 R3 ⋊ {∆(0, 1, 0),∆(1, 0, β)}, β ̸= 0. 2

- - Gα,β
5,33 R3 ⋊ {∆(0, 1, α),∆(1, 0, β)}, α ⩽ β, α ̸= 0 2

- - Gα
5,34 R3 ⋊ {∆(α, 1, 1),∆(1, 0, 1)} 2

Gα,β
5,35 - Gα,β

5,33 R3 ⋊ {∆(α,±i),∆(β, 1, 1)}, α ̸= 0. 2

G0,β
5,35 - R×G1,β

4,5 R3 ⋊ {∆(0,±i),∆(β, 1, 1)}, β ̸= 0 2

- - G5,36
(‡) heis⋊ {∆(1, 0, 1),∆(−1, 1, 0)} 2

G5,37 R×G1
4,9 heis⋊ {∆(1, 1, 2),∆(±i, 0)} 2

G5,38 R2 ⋊ heis; see Example A.9 3
G5,39 - G1

5,8 see Example A.9 3
(‡) G5,36 is the maximal completely solvable subgroup of the rank two simple group SL(3,R).

Table 3. The simply connected, real, indecomposable, solvable Lie
groups of exponential growth and dimension five (started on Table 2).
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Group ρ1 S.S. SOL HOM AW D. Ex. δ(n) Reason

G3,2 G3,3 ✓ × n Hyp
G3,3 G3,3 n ρ1
G3,4 G3,4 ✓ ✓ exp(n) SOL
Gα>0

3,5 Gα
3,5 ✓ n Hyp

Gα<0
3,5 Gα

3,5 ✓ ✓ exp(n) SOL

Gα>0
4,2 G1,α

4,5 ✓ × n Hyp

Gα<0
4,2 G1,α

4,5 ✓ ✓ exp(n) SOL

G4,3 G4,3 × × × × {ω2,3, ω2,4} n3 n3 D.Ex., GT

G4,4 G1,1
4,5 ✓ × n Hyp

G0<α≤β
4,5 Gα,β

4,5 ✓ × n Hyp

Gα<0,β ̸=0
4,5 Gα,β

4,5 ✓ ✓ exp(n) SOL

G4,7 G1
4,9 ✓ × n Hyp

G4,8 G4,8 ✓ ✓ exp(n) SOL
G0

4,9 R×G3,3 ✓ × n2 ρ1, K

G0<β≤1
4,9 Gβ

4,9 ✓ × n HYP

G−1≤β<0
4,9 Gβ

4,9 ✓ ✓ exp(n) SOL

Table 4. Indecomposable completely solvable groups of exponential
growth and dimension less than 5 and their Dehn functions.

A.2. Computations. In this section we explain how to compute the data and criteria
described above. We do not give the complete computations, but rather provide full
details on a few selected examples in each category.

A.2.1. Computing ρ1(G) for simply connected solvable G. Beware that we do not take
the same bases as in [Mub63, PSWZ76] when working in the Lie algebras: often, the
order and the sign of the vectors is changed according to our needs.

Example A.3. The Lie algebra of the group G4,3 is R3 ⋊ ∆(1, 02). Let (e1, . . . e4)
be its basis. The derived subalgebra is C2g = ⟨e1, e2⟩, and the exponential radical is
C3g = ⟨e1⟩. The quotient g4,3/Rexp g4,3 is isomorphic to heis, the exponential radical is
split, and the action on it is R-diagonalizable. So G4,3 is in (C1).

Example A.4. The Lie algebra of the group G4,7 is heis ⋊ ∆(12, 2), which means
that it has a basis (e1, e2, e3, e4) where e1, e2 and e3 generate a Heisenberg ideal, with
[e1, e2] = e3, and that

ade4 =

1 1 0
0 1 0
0 0 2


in the basis (e1, e2, e3). We have C3G4,7 = C2G4,7, so the exponential radical is the nil-
radical. To compute ρ1(G4,7) we remove the nilpotent part in the Jordan decomposition
of ade4 , this gives a new Lie algebra law which is that of heis⋊∆(1, 1, 2). We find that
it is G1

4,9. (G4,7 is QI rigid within (C0) by the combination of [CT11] and [CPS17]).



LOWER BOUNDS ON DEHN FUNCTIONS AND QI RIGIDITY OF SOL5 27

Group δ(n) Reason Group δ(n) Reason

Gα≥β≥γ>0
5,7 n Hyp Gβ>0

5,23 n Hyp

G0̸=α,0 ̸=β,γ<0
5,7 exp(n) SOL Gβ<0

5,23 exp(n) SOL

G−1≤γ<0
5,8 exp(n) SOL Gϵ

5,24 n ρ1
G0<γ≤1

5,8 n3 n3 D.Ex. {ω51}, GT G1,0
5,25 n3 ρ1 = ρ0

G0<β≤γ
5,9 n Hyp Gβ,α,βα<0

5,25 exp(n) ρ1
G0>β,γ ̸=0

5,9 exp(n) SOL Gβ,α,βα>0
5,25 n ρ1 = ρ0

G5,10 n4 n4 D.Ex. {ω15, ω23}, GT S1
5,26 n ρ1

Gγ>0
5,11 n Hyp Sα,ϵ

5,26 n ρ1
Gγ<0

5,11 exp(n) SOL G5,27 n2 ρ1, K
G5,12 n ρ1 G1

5,28 n2 ρ1, K

G1>α,0,1
5,13 exp(n) ρ1 Gα>1

5,28 n ρ1
G1<α,0,1

5,13 n2 ρ1 = ρ0 Gα<1
5,28 exp(n) ρ1

Gα≤β,τ :α<0
5,13 exp(n) ρ1 G5,29 n3 n3 D.Ex. {ω12, ω15}, GT

G0<α≤β,τ
5,13 n ρ1 G−1

5,30 exp(n) SOL

Gα̸=0
5,14 n3 ρ1 = ρ0 G0

5,30 exp(n) SOL
G0

5,15 n3 ρ1 = ρ0 G1
5,30 n2 ρ1, K

Gβ<0
5,15 exp(n) ρ1 G

1>α/∈{−1,0}
5,30 exp(n) SOL

Gβ>0
5,15 n ρ1 G1<α

5,30 n Hyp

G0,τ ̸=0
5,16 n2 ρ1 = ρ0 G5,31 n ρ1

G0>β,1
5,16 exp(n) ρ1 Gα

5,32 n2 ρ1, K

G0<β,1
5,16 n ρ1 G0,β<0

5,33 exp(n) SOL

G0̸=τ,0,1
5,17 n2 ρ1 = ρ0 G0,β>0

5,33 n2 A-W, not Hyp

G0̸=τ,α,β:αβ>0
5,17 n ρ1 Gα<β=0

5,33 exp(n) SOL

G0̸=τ,α,β:αβ<0
5,17 exp(n) ρ1 G0<α,β=0

5,33 n2 C-T, not Hyp, K

Gα̸=0
5,18 n ρ1 G0<α≤β

5,33 n2 A-W, not Hyp

G0,β ̸=0
5,19 exp(n) SOL Gα≤β<0

5,33 n2 C-T, not Hyp, K

G1,β<0
5,19 exp(n) SOL Gα

5,34 n2 A-W, not Hyp

G1,β>0
5,19 n2 ρ1, K G0,β<0

5,35 exp(n) ρ1 = ρ0

G
α,β:(α−1)β<0
5,19 exp(n) SOL G0,β>0

5,35 n2 ρ1 = ρ0

G
α,β:(α−1)β>0
5,19 n Hyp Gα<β=0

5,35 exp(n) ρ1 = ρ0
G0

5,20 exp(n) SOL G0<α,β=0
5,35 n2 ρ1 = ρ0

G1
5,20 n2 ρ1, K G0<α≤β

5,35 n2 ρ1 = ρ0

G
α:(α−1)α<0
5,20 exp(n) ρ1 Gα≤β<0

5,35 n2 ρ1 = ρ0

G
α:(α−1)α>0
5,20 n ρ1 G5,36 n2 A-W, not Hyp

G5,21 n ρ1 G5,37 n2 ρ1 = ρ0
G5,22 n4 n4 D.Ex. {ω25, ω34}, GT G5,38 n3 n3 D. Ex. {ω35;ω34}, GT

G5,39 n3 ρ1 = ρ0

Table 5. Dehn functions of 5-dimensional simply connected indecom-
posable solvable Lie groups.

Example A.5. The Lie algebra of the group Gϵ
5,24 has a nilradical n = heis×R, with

basis (e1, e2, e3, e4) such that [e1, e2] = e3, and

ade5 = ϕϵ5,24 :=


1 1 0 0
0 1 0 0
0 0 2 ϵ
0 0 0 2

 , ϵ = ±1.
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(Beware the basis in [Mub63] would rather be (e2, e1,−e3, e4,−e5)). Since ade5 is non-
degenerate on n, the exponential radical is again equal to the nilradical. If ϵ = 1
then ϕϵ5,24 has Jordan normal form in the given basis, and its diagonal part is that

of type ∆(1, 1, 2, 2). If ϵ = −1, then ϕϵ5,24 has its standard Jordan form in the basis

(f1, f2, f3, f4) := (e1, e2,−e3, e4) and the diagonal part the same. (Note that [f1, f2] =
−f3, which is why we could not express the structure of gϵ5,24 in the table.) In both

cases, ρ1(g
ϵ
5,24) = (heis×R)⋊∆(1, 1, 2, 2) = g2,25,19.

Example A.6. The Lie algebra of the group Gα,ϵ
5,26 has a basis (e1, . . . , e5) with [e1, e2] =

e3, [e5, e1] = αe1 + e2, [e5, e2] = αe2 − e1, [e5, e3] = 2αe3 and [e5, e4] = 2αe4 + ϵe3.
Without loss of generality the parameter α is positive5; set

(f1, f2, f3, f4, f5) =

(
ϵ√
α
e1,

1√
α
e2,

ϵ

α
e3, e4,

1

α
e5

)
.

Then, with τ = α−1/2,

[adf5 ](f1,f2,f3,f4) = ϕα,ϵ5,26 =


1 −τ 0 0
τ 1 0 0
0 0 2 ϵ
0 0 0 2

 , ϵ = ±1.

The derivation ϕα,ϵ5,26 has Jordan type ∆(1 + iτ, 22), so ρ0(G
α,ϵ
5,26) is S

1
5,26.

Example A.7. The Lie algebra of G5,27 has nonzero brackets [e1, e2] = e3, [e5, e3] = e3,
[e5, e2] = e2 + e4, [e5, e4] = e3 + e4. Thus C2G5,27 = C3G5,27 = ⟨e2, e3, e4⟩ and this is
the exponential radical. The cone dimension is therefore 2. Moreover, the exponential
radical splits, and in the basis (e3, e4, e2), ade5 has type ∆(13) while ade1 is nilpotent.

From this we deduce that ρ1(G5,27) is R×G1,1
4,5.

Example A.8. The Lie algebra gα5,32 has a basis (e1, . . . , e5) where [e1, e2] = e3, [e1, e3] =
e4 and the matrix of ade5 in this basis is

[ade5 ] = ϕα5,32 =


0 0 0 0
0 1 0 0
0 0 1 0
0 α 0 1


The derived subgroup is ⟨e2, . . . , e4⟩ and this is the exponential radical. e1 acts nilpo-
tently on the exponential radical. Hence the Lie algebra of ρ1(G

α
5,32) is, in the same

basis, ⟨e2, e3, e4⟩ ⋊ ⟨e1, e5⟩, where ade1 = 0 and ade5 = 1. This further splits as

(⟨e2, e3, e4⟩⋊ ⟨e5⟩)× ⟨e1⟩, with the isomorphism type of G1,1
4,5 ×R.

Example A.9 (G5,38 and G5,39). The Lie algebra g5,38 has a two-dimensional abelian
ideal r, generated by the basis element (e1, e2), and splits as a semidirect product r⋊heis,
where a section of heis is generated by (e3, e4, e5), where [e5, e4] = e3,

ade4 =

(
1 0
0 0

)
and ade5 =

(
0 0
0 1

)
in the basis (e1, e2) of r. The nilradical is n = r+Re5, it is not split. We compute that
C2g5,38 = n and C3g5,38 = C4g5,38 = r, so that r is the exponential radical. The action
of span(e3, e4, e5) being diagonal, g5,38 is in (C1).

5We might as well define the group for α < 0. However, exchanging e1 and e2 while turning e3 and e4
into their opposite we see that G−α,ϵ

5,26 ≃ Gα,−ϵ
5,26 ; there are no further isomorphism in this family thanks

to the invariant given in [PSWZ76], where α is denoted by p.
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Let us now turn to g5,39 The structure of the Lie algebra g5,39 is also r⋊heis but this
time the adjoint action of e4 and e5 on r are, instead,

ade4 =

(
1 0
0 1

)
and ade5 =

(
0 1
−1 0

)
in the basis (e1, e2) of r. Again, the nilradical n = r+Re3 is not split, and r is the expo-
nential radical. However the action of e5 on the nilradical has a purely imaginary type,
so that, ρ0(g5,39) = r⋊heis with e5 centralizing r. Further, ρ0(g5,39) admits the following
description: span(e1, e2, e3, e5) is an abelian ideal and, in the basis (−e3, e5, e1, e2), ade4
has matrix of type ∆(02, 1, 1). Consequently, ρ0(g5,39) = g15,8.

A.2.2. Standard Solvability. We need to check whether G splits as G = U ⋊ A, where
U is the exponential radical of G, A is abelian and the action of A on U/[U,U ] has no
fixed points (Proposition 2.5). When A is 1-dimensional this becomes a very easy task.
In the general case, in the presence of an abelian complement A to U in G, it is quite
straight forward to check the eigenvalues of the action of A on U/[U,U ]. When G/U is
non-abelian, this rules out the possibility of U having an abelian complement in G.

Example A.10. Let us check that Gγ
5,8 is not standard solvable. The nonzero Lie

brackets are:
[e5, e2] = e1, [e5, e3] = e3, [e5, e4] = γe4;

The exponential radical u is generated by {e3, e4} and is isomorphic to R2. Any
complement of this must be isomorphic to the quotient of g by u, which is the Heisenberg
algebra. In particular there is no abelian complement, and Gγ

5,8 is not standard solvable.

A.2.3. Azencott-Wilson criterion. The Azencott-Wilson criterion from [AW76] states
that a completely solvable Lie group G admits a left-invariant nonpositively curved
Riemannian metric if the following conditions on its Lie algebra g are met:

(1) g = n⊕ a, where n is its nilradical and a is abelian.
(2) For every root α and H ∈ a with α(H) = 0, adH|nα is semisimple.
(3) The set of roots that are different from 0 lie in an open half-space.
(4) The zero weight space is central in n.
(5) For each root α, let

n0α = {X ∈ nα} | [X, nβ] = 0 whenever γ is a root linearly independent of α}.
Then for all α, the space n0α is a-invariant and admits an a-invariant complement
on which a acts semisimply.

Example A.11. We show that G5,36 admits the Azencott-Wilson criterion. We remark
that this group is the Borel subgroup of SL3(R) so the fact that it acts on a nonpositively
curved space is well known. We give this example in detail only to familiarize the reader
with the Azencott-Wilson criterion.

The Lie algebra g5,36 is given by the brackets:

[e1, e2] = e3, [e4, e1] = e1, [e4, e3] = e3, [e5, e1] = −e1, [e5, e2] = e2

The nilradical of g5,36 is n = ⟨e1, e2, e3⟩, isomorphic to heis. It has a natural abelian
complement in a := ⟨e4, e5⟩. The action of all elements of a is semisimple, so condition
2 is met. The set of roots of a is {(1,−1), (0, 1)(1, 0)}, all lying in an open half-space
of R2. The 0-root space is trivial and in particular central in n. Condition (5) is the
most involved: For the root α = (1,−1), nα = ⟨e1⟩. Since [e1, e2] ̸= 0, the space
n0α = {0}. Obviously this space is a-invariant, its complement in n is the whole n which
is a-invariant. Finally, a acts semisimply on n, so condition (5) is met for the root
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(−1, 1). The same argument works for the root (0, 1), as n0(0,1) = {0}. For the root

(1, 0) we have n0(1,0) = ⟨e3⟩. But also this space is easily seen to satisfy the requirements

of condition (5). We conclude that g5,36 admits the Azencott-Wilson criterion.

Example A.12. We show that the group G1
5,30 does not admit the Azencott-Wilson

criterion. Notice that this group does have Dehn function n2, and could possibly act on
a nonpositively curved space.

The Lie algebra is defined by the filiform brackets [e1, e2] = e3, [e1, e3] = e4, and
non-zero action of e5 given by [e5, e1] = e1, [e5, e3] = e3, [e5, e4] = 2e4. We see that
the nilradical is spanned by {e1, e3, e4} and that the complement spanned by {e2, e5}
is abelian. However, e2 acts on the nilradical with ordered basis (e3, e1, e4) via the
following matrix: 0 1 0

0 0 0
0 0 0

 .

Considering the root α such that α(e5) = 1 and α(e2) = 0, we observe that e2 does not
act semisimply on the space nα = ⟨e3, e1⟩. This violates condition (2) of the criterion.

A.2.4. SOL obstruction. Propositions 4.C.3 and 4.9.D of [CT17] state that a group
admits the SOL obstruction if and only if its exponential radical admits two quasi-
opposite principal weights. By weight we mean elements of Hom(G/U,R) with non-zero
eigenspaces; weights are principal if they are weights of the action on U/[U,U ].

Example A.13. We show that Gβ<0
5,23 admits the SOL obstruction. The defining Lie

brackets are

[e1, e2] = e3, [e5, e1] = e1, [e5, e2] = e1 + e2, [e5, e3] = 2e3, [e5, e4] = βe4

The Lie algebra of the exponential radical is u = ⟨e1, e2, e3, e4⟩, a direct product of heis
and R. Therefore u/[u, u] = ⟨e1, e2, e4⟩, which is R3. The action of a = ⟨e5⟩ on this
space is given by the roots (1), (1), (β). Since β < 0, we see that 0 is in the convex hull

of the principal roots, and conclude Gβ<0
5,23 admits the SOL obstruction.

A.2.5. 2-homological obstruction. Let u be the Lie algebra of the exponential radical U ,
and consider the action of G/U on U . This action extends to an action on H2(u), the
second homology of u, defined by linearly extending the action on 2-vectors given by
t.(v1∧v2) = t.v1∧v2+v1∧ t.v2. The 2-homological obstruction states that if this action
on H2(u) has a non-trivial zero eigenspace, then G has exponential Dehn function. The
computation of this condition is algorithmic. We give one example to manifest it.

Example A.14. We show the group G5,29 does not have the 2-homological obstruction.
The defining brackets are:

[e2, e3] = e4, [e5, e2] = e1, [e5, e3] = e3, [e5, e4] = e4

The Lie algebra of the exponential radical is u := ⟨e3, e4⟩ which is isomorphic to R2.
The second homology group of R2 is one dimensional generated by e3 ∧ e4. Since it
is 1-dimensional, it is enough to find one element of a which acts non-trivially on it.
Indeed, e5.(e3∧e4) = 2e3∧e4. We conclude that G5,29 does not admit the 2-homological
obstruction.

We remark that in [CT17, Section 1.5.3], Cornulier and Tessera give an example of
a group that admits the 2-homological obstruction but not the SOL obstruction. We
note that in all groups we checked (i.e. up to dimension 5) there is no such group.
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A.2.6. Generalized tame groups. Assume G = U ⋊ N . An element c ∈ N acts as a
compaction on U if there is a compact set Ω ⊂ U such that for every compact subset
K ⊂ U there is n ≥ 0 such that cn(K) ⊂ Ω.

Definition A.15 ([CT17], Definition 6.E.1). A locally compact group G is generalized
tame if it has a semi-direct product decomposition G = U ⋊ N where some element c
of N acts on U as a compaction, and N is nilpotent and compactly generated.

Example A.16. Consider Gγ
5,8 for γ ∈ (0, 1]. The defining brackets are:

[e5, e1] = 0, [e5, e2] = e1, [e5, e3] = e3, [e5, e4] = γe4

The exponential radical is ⟨e3, e4⟩, and the quotient by it is ⟨e1, e2, e5⟩, isomorphic to
the Heisenberg group where e1 is central. The element exp(e5) acts as a compaction on
the exponential radical. The Dehn function of the Heisenberg group is cubic, therefore
G has cubic Dehn function.

A.2.7. Central Extensions. See example in Section 3.C.

A.2.8. Computing Kill(Rexp g)0. When a non-hyperbolic standard solvable group G
does not have the SOL nor the 2-homological obstruction, [CT17, Theorem F] gives
a sufficient condition for the Dehn function of G to be quadratic. This condition is
given by the vanishing of the zero weight submodule in the Killing module of Rexp g,
that is, in the quotient of the symmetric square of Rexp g by the submodule spanned by
elements of the form [x, y] ⊙ z − x ⊙ [y, z] for x, y, z ∈ Rexp g. When the exponential
radical is abelian, this is not a proper quotient and we will still denote the elements of
the Killing module by their representatives in the symmetric square.

Example A.17. Let us prove that Kill(Rexp g
0
4,9)0 = 0. The nonzero Lie brackets in

g04,9 are [e1, e2] = e3, [e4, e1] = e1. The exponential radical is spanned by e1 and e3; it is

abelian, so that Kill(Rexp g
0
4,9) is three dimensional, spanned by e1⊙e1, e1⊙e3 = e3⊙e1,

and e3⊙e3. Using ei · (ej⊙ek) = [ei, ej ]⊙ek+ej⊙ [ei, ek] for i ∈ {2, 4} and j, k ∈ {1, 3},
we obtain that

e2 · (e1 ⊙ e1) = −2e1 ⊙ e3 e4 · (e1 ⊙ e1) = 2e1 ⊙ e1

e2 · (e1 ⊙ e3) = −e3 ⊙ e3 e4 · (e1 ⊙ e3) = 2e1 ⊙ e3

e2 · (e3 ⊙ e3) = 0 e4 · (e3 ⊙ e3) = 2e3 ⊙ e3,

so that Kill(Rexp g
0
4,9)0 = 0.

Example A.18 (An example with non-abelian exponential radical). Let us check that
Kill(Rexp g

1
5,30)0 = 0. The nonzero Lie brackets are [e1, e2] = e3, [e1, e3] = e4, [e5, e1] =

e1, [e5, e3] = e3, [e5, e4] = 2e4. The exponential radical is spanned by e1, e3, e4; it is non
abelian, and the Killing module is a quotient of its symmetric square by the submodule
spanned by all the symmetric tensors involving e4; indeed,

[e1, e3]⊙ e3 − e1 ⊙ [e3, e4] = e4 ⊙ e4;

[e1, e3]⊙ e3 − e1 ⊙ [e3, e3] = e3 ⊙ e4;

[e1, e3]⊙ e1 − e1 ⊙ [e3, e1] = e1 ⊙ e4 − (e1 ⊙−e4) = 2e1 ⊙ e4.

Now

e2 · [e1 ⊙ e1] = −2[e1 ⊙ e3] e5 · [e1 ⊙ e1] = 2[e1 ⊙ e1]

e2 · [e1 ⊙ e3] = −[e1 ⊙ e3] e5 · [e1 ⊙ e3] = 2[e1 ⊙ e3]

e2 · [e3 ⊙ e3] = 0 e5 · [e3 ⊙ e3] = 2[e3 ⊙ e3],
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finishing the proof that Kill(Rexp g
1
5,30)0 = 0. The group G1

5,30 is standard solvable,

and sublinear bilipschitz equivalent to G1
4,9 ×R, so that its Dehn function was a priori

between n2 and n2 log4 n by Corollary 3.7; the computation of the zero weight subspace
in the Killing module above raises this indetermination, and the Dehn function of G1

5,30

is quadratic.

Example A.19 (An example with parameters). Let us compute Kill(Rexp g
α,β
5,33)0 de-

pending on α and β. The nonzero Lie brackets are as follows:

[e4, e1] = 0, [e5, e1] = e1, [e4, e2] = e2, [e5, e2] = 0, [e4, e3] = αe3, [e5, e3] = βe3.

We can assume that (α, β) ̸= (0, 0), otherwise ⟨e3⟩ becomes a direct factor, and α ⩽ β

without loss of generality. Since u = Rexp g
α,β
5,33 = span(e1, e2, e3) is abelian, Kill(u) =

u⊙ u. We compute that

e4 · (e1 ⊙ e1) = 0 e4 · (e2 ⊙ e2) = 2e2 ⊙ e2

e4 · (e1 ⊙ e2) = e1 ⊙ e2 e4 · (e2 ⊙ e3) = (1 + α)e2 ⊙ e3

e4 · (e1 ⊙ e3) = αe1 ⊙ e3 e4 · (e3 ⊙ e3) = 2αe3 ⊙ e3

and similarly (by exchanging e1 and e2, α and β)

e5 · (e1 ⊙ e1) = 2e1 ⊙ e1 e5 · (e2 ⊙ e2) = 0

e5 · (e1 ⊙ e2) = e1 ⊙ e2 e5 · (e2 ⊙ e3) = βe2 ⊙ e3

e5 · (e1 ⊙ e3) = (1 + β)e1 ⊙ e3 e5 · (e3 ⊙ e3) = 2βe3 ⊙ e3.

Thus we get that

Kill(Rexp g
α,β
5,33)0 =

{
⟨e2 ⊙ e3⟩ (α, β) = (−1, 0)

0 otherwise.

(The case (α, β) = (−1,−1) is treated in [CT17, 1.5.2].) Note that when α > 0, the
fact that δG(n) ≍ n2 follows already from the Azencott-Wilson criterion.
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