Looking at Lie groups through Gromov's telescope

Gabriel Pallier, Karlruher Institut für Technologie

University of Bern, Colloquium

November 21, 2022

Where is the intruder?

Where is the intruder?

It depends if you are using a microscope or a telescope.

We change the rules: now we can move the microscope/telescope

Connected Lie groups

You already know some Lie groups. Let's gather a set of "familiar" Lie groups.

Connected Lie groups

In principle (Levi-Malcev) one could classify all Lie groups if one could classify semi-simple Lie groups and solvable Lie groups.

semi-simple Nice classification. Not too many. **nilpotent and solvable** No classification. Wild.

Connected Lie groups

semi-simple

nilpotent and solvable

Quasiisometry

Since Mostow, following Margulis and Gromov, a concept has emerged for comparing groups on the large scale: **quasiisometry**.

Quasiisometry

Let X and Y be two metric spaces. $\phi: X \to Y$ is a quasiisometry if there exists $L \ge 1$ and $C \ge 0$ such that

$$\forall x, x' \in X, \\ \frac{1}{L}d(x, x') - c \leqslant \\ d(\phi(x), \phi(x')) \leqslant \\ Ld(x, x') + c. \end{cases}$$

$$\forall y \in Y, \ d(y,\phi(X)) \leq c.$$

Quasiisometry

Since Mostow, following Margulis and Gromov, a concept has emerged for comparing groups on the large scale: **quasiisometry**.

Quasiisometry

Let X and Y be two metric spaces. $\phi: X \to Y$ is a quasiisometry if there exists $L \ge 1$ and $C \ge 0$ such that

$$\forall x, x' \in X, \\ \frac{1}{L}d(x, x') - c \leqslant \\ d(\phi(x), \phi(x')) \leqslant \\ Ld(x, x') + c. \end{cases}$$

$$\forall y \in Y, \ d(y,\phi(X)) \leq c.$$

Quasiisometry

Since Mostow, following Margulis and Gromov, a concept has emerged for comparing groups on the large scale: **quasiisometry**.

Quasiisometries and the telescope (asymptotic cone)

Informally, $\phi \colon X \to Y$ is a quasiisometry if it "goes through any moving telescope".

If you point out at a sequence of points $\{\phi(x_n)\}$ on Y and rescale by a sequence $\{s_n\}$ with limit $+\infty$, you will see a biLipschitz homemorphic image of what you see when pointing the telescope at $\{x_n\}$ on X and rescaling by $\{s_n\}$.

Classifying Lie groups up to quasiisometry

Theorem (Mostow, 1970s)

Conjecture (Cornulier)

Looking at semisimple Lie groups through the telescope

Piece of Euclidean building, G = SL(3, R),r = 2

Looking at semisimple Lie groups through the telescope

Piece of Euclidean building, G = SL(3, R),r = 2 Looking at nilpotent groups through the telescope

Carnot-Carathéodory metric on the Heisenberg group

Sublinear equivalence (Cornulier, 2008)

O(u)-equivalence Let X and Y be pointed metric spaces. $\phi: X \to Y$ is a O(u)-equivalence if $L \ge 1$ and usublinear function such that $\blacktriangleright \forall x, x' \in B_X(r),$ $\frac{1}{L}d(x,x')-u(r) \leq$ $d(\phi(x),\phi(x')) \leq$ Ld(x, x') + u(r).▶ $\forall y \in B_Y(r)$, $d(y, \phi(X)) \leq u(r).$

Quasiisometry : $u \equiv 1$.

Sublinear equivalence (Cornulier, 2008)

Let X and Y be pointed metric spaces. $\phi: X \to Y$ is a O(u)-equivalence if $L \ge 1$ and usublinear function such that

$$\forall x, x' \in B_X(r), \\ \frac{1}{L}d(x, x') - u(r) \leqslant \\ d(\phi(x), \phi(x')) \leqslant \\ Ld(x, x') + u(r). \end{cases}$$

$$\forall y \in B_Y(r), \\ d(y, \phi(X)) \leq u(r).$$

Quasiisometry : $u \equiv 1$.

Sublinear equivalence (Cornulier, 2008)

Let X and Y be pointed metric spaces. $\phi: X \to Y$ is a O(u)-equivalence if $L \ge 1$ and usublinear function such that

$$\forall x, x' \in B_X(r), \\ \frac{1}{L}d(x, x') - u(r) \leq \\ d(\phi(x), \phi(x')) \leq \\ Ld(x, x') + u(r). \end{cases}$$

$$\forall y \in B_Y(r), \\ d(y, \phi(X)) \leqslant u(r).$$

Quasiisometry : $u \equiv 1$.

O(u)-equivalence and semisimple groups

Theorem (P., 2018)

O(u) equivalence and nilpotent groups

O(u) equivalence and nilpotent groups

Pansu's microscope

A bilipschitz homeomorphism between Carnot groups is a.e. Pansu differentiable.

 $\varphi: \mathcal{G} \to \mathcal{H}$ is "differentiable" at $\xi \in \mathcal{G}$ si

$$D_{\mathsf{P}}\varphi(\xi): u \mapsto \lim_{t \to +\infty} e^{t\delta_H}\varphi(\xi)^{-1}\varphi(\xi e^{-t\delta_G}u)$$

converges uniformly on every compact set of G.

An (old) application of this

Gromov's polynomial growth theorem (1980)

Let Γ be a finitely generated groups. If Γ has poynomial growth, then it has a nilpotent finite index subgroup.

The proof uses the fact that the image of Γ from infinitely far away is a Lie group (esp. locally compact).

Still open question

Classify finitely generated groups up to quasiisometry.

Another invariant: The filling function

Let $L \ge 1$. Let G be a simply connected Lie group with a left-invariant Riemannian metric. Define

$$\mathsf{Fill}_{G}(L) = \sup_{\gamma: S^{1} \to G, \ell(\gamma) \leqslant L} \inf\{\mathsf{Area}(\Delta) : \partial \Delta = \mathsf{im}(\gamma)\},\$$

If $\operatorname{Fill}_G(L) \sim L^p$ for some p > 1 and G and H are quasiisometric, then $\operatorname{Fill}_G(L) \sim L^p$ as well.

Another invariant: The filling function

Let $L \ge 1$. Let G be a simply connected Lie group with a left-invariant Riemannian metric. Define

$$\mathsf{Fill}_{G}(L) = \sup_{\gamma: S^{1} \to G, \ell(\gamma) \leqslant L} \inf{\{\mathsf{Area}(\Delta) : \partial \Delta = \mathsf{im}(\gamma)\}},$$

If $\operatorname{Fill}_G(L) \sim L^p$ for some p > 1 and G and H are quasiisometric, then $\operatorname{Fill}_G(L) \sim L^p$ as well.

Theorem (LLosa Isenrich - P. -Tessera 2020)

For all $q \in \{3, 4, 5, ...\}$ there exists a pair $\{G, H\}$ of simply connected nilpotent Lie groups with $\mathscr{K}^{(G)} \simeq \mathscr{K}^{(H)}$, Fill_G(L) ~ L^q but Fill_H(L) ~ L^{q+1}.

Moving away from the groups

"This space [the finitely generated group Γ with its word metric] may appear boring and uneventful to a geometer's eye. To regain the geometric perspective, one has to change his/her position and move the observation point far away from

[the group]. Then [...] the points of Γ coalesce into a connected continuous solid unity which occupies the visual horizon without gaps or holes, and fills our geometer's heart with joy."

Misha Gromov

Thanks!