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Microscopes and telescopes

x2 + y2 = 1

A

(x2 + y2)2 = z2 + 1

B

x2 + y2 = z2 + 1

C

Where is the intruder?

It depends if you are using a microscope or a telescope.
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Microscopes and telescopes

A B C
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Microscopes and telescopes

We change the rules: now we can move the microscope/telescope

A B C

Microscope

Moving
telescope



Connected Lie groups

You already know some Lie groups. Let’s gather a set of “familiar”
Lie groups.



Connected Lie groups

In principle (Levi-Malcev) one could classify all Lie groups if one
could classify semi-simple Lie groups and solvable Lie groups.

SO(n, 1)

SU
(n, 1)

Sp(n, 1)
F

(−
2
0
)

4

SL(n, R)
Sp(

2n,
R)

semi-simple
Nice classification. Not too many.

nilpotent and solvable
No classification. Wild.



Connected Lie groups

semi-simple nilpotent and solvable



Quasiisometry

Since Mostow, following Margulis and Gromov, a concept has
emerged for comparing groups on the large scale: quasiisometry.

Quasiisometry

Let X and Y be two metric
spaces. φ : X → Y is a
quasiisometry if there exists
L > 1 and C > 0 such that

I ∀x , x ′ ∈ X ,
1
Ld(x , x ′)− c 6
d(φ(x), φ(x ′)) 6
Ld(x , x ′) + c .

I ∀y ∈ Y , d(y , φ(X )) 6 c.

quasiisometric

quasiisometric

not quasiisometric
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Quasiisometries and the telescope (asymptotic cone)

Informally, φ : X → Y is a quasiisometry if it “goes through any
moving telescope”.
If you point out at a sequence of points {φ(xn)} on Y and rescale
by a sequence {sn} with limit +∞, you will see a biLipschitz
homemorphic image of what you see when pointing the telescope
at {xn} on X and rescaling by {sn}.



Classifying Lie groups up to quasiisometry

SO(n, 1)

SU
(n, 1)

Sp(n, 1)
F

(−
2
0
)

4

SL(n, R)
Sp(

2n,
R)

Theorem (Mostow, 1970s) Conjecture (Cornulier)



Looking at semisimple Lie groups through the telescope

Piece of Euclidean building,
G = SL(3,R),

r = 2



Looking at semisimple Lie groups through the telescope

Piece of Euclidean building,
G = SL(3,R),

r = 2

Theorem (Kleiner-Leeb 94)

Let G be a semisimple Lie group
with trivial center and rank r .

(G ) is a Euclidean building
(not locally compact) of
covering dimension r .



Looking at nilpotent groups through the telescope

Carnot-Carathéodory metric on the Heisenberg group



Sublinear equivalence (Cornulier,2008)

O(u)-equivalence

Let X and Y be pointed metric
spaces. φ : X → Y is a
O(u)-equivalence if L > 1 and u
sublinear function such that

I ∀x , x ′ ∈ BX (r),
1
Ld(x , x ′)− u(r) 6
d(φ(x), φ(x ′)) 6
Ld(x , x ′) + u(r).

I ∀y ∈ BY (r),
d(y , φ(X )) 6 u(r).

Quasiisometry : u ≡ 1.

(x2 + y2)2 = z2

catenoid
plane

O(
√
r)-equivalent

O(log)-equivalent

not O(u)-equivalent
(for any u)
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O(u)-equivalence and semisimple groups

SO(n, 1)

SU
(n, 1)

Sp(n, 1)
F

(−
2
0
)

4

SL(n, R)
Sp(

2n,
R)

Theorem (P., 2018)



O(u)equivalence and nilpotent groups

Theorem (Pansu, 1989)

Pansu’s microscope

A bilipschitz homeomorphism between Carnot groups is a.e. Pansu
differentiable.

ϕ : G → H is “differentiable” at ξ ∈ G si

DPϕ(ξ) : u 7→ lim
t→+∞

etδHϕ(ξ)−1ϕ(ξe−tδG u)

converges uniformly on every compact set of G .
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An (old) application of this

Gromov’s polynomial growth theorem (1980)

Let Γ be a finitely generated groups. If Γ has poynomial growth,
then it has a nilpotent finite index subgroup.

The proof uses the fact that the image of Γ from infinitely far away
is a Lie group (esp. locally compact).

Still open question

Classify finitely generated groups up to quasiisometry.



Another invariant: The filling function
Let L > 1. Let G be a simply connected Lie group with a
left-invariant Riemannian metric. Define

FillG (L) = sup
γ:S1→G ,`(γ)6L

inf{Area(∆) : ∂∆ = im(γ)},

If FillG (L) ∼ Lp for some p > 1 and G and H are quasiisometric,
then FillG (L) ∼ Lp as well.

Theorem (LLosa Isenrich - P. -Tessera 2020)

For all q ∈ {3, 4, 5, ...} there exists a pair {G ,H} of simply

connected nilpotent Lie groups with (G ) ' (H),
FillG (L) ∼ Lq but FillH(L) ∼ Lq+1.



Another invariant: The filling function
Let L > 1. Let G be a simply connected Lie group with a
left-invariant Riemannian metric. Define

FillG (L) = sup
γ:S1→G ,`(γ)6L

inf{Area(∆) : ∂∆ = im(γ)},

If FillG (L) ∼ Lp for some p > 1 and G and H are quasiisometric,
then FillG (L) ∼ Lp as well.

Theorem (LLosa Isenrich - P. -Tessera 2020)

For all q ∈ {3, 4, 5, ...} there exists a pair {G ,H} of simply

connected nilpotent Lie groups with (G ) ' (H),
FillG (L) ∼ Lq but FillH(L) ∼ Lq+1.



Moving away from the groups

“This space [the finitely generated

group Γ with its word metric] may

appear boring and uneventful to a

geometer’s eye. To regain the

geometric perspective, one has to

change his/her position and move

the observation point far away from

[the group]. Then [...] the points

of Γ coalesce into a connected

continuous solid unity which

occupies the visual horizon without

gaps or holes, and fills our

geometer’s heart with joy.”

Misha Gromov

Thanks!
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