Quasiisometries and rough isometries of solvable Lie groups

Gabriel Pallier, based on joint work with E. Le Donne and X. Xie

Heidelberg – Karlsruhe – Strasbourg Geometry day June 27th 2023

Quasiisometric rigidity

Quasiisometric rigidity and SOL-like groups

Quasiisometry

Let X and Y be metric spaces.

Quasiisometry

 $f:X \to Y$ is a quasiisometry if there exists $\ell, L > 0$ and $c \geqslant 0$ such that

- ► $\ell d(x,x') c \leq d(f(x), f(x')) \leq Ld(x,x') + c$ for all $x, x' \in X$
- $d(y, f(X)) \leq c$ for all $y \in Y$.

Quasiisometry

Let X and Y be metric spaces.

Quasiisometry

 $f:X \to Y$ is a quasiisometry if there exists $\ell, L > 0$ and $c \geqslant 0$ such that

- ► $\ell d(x,x') c \leq d(f(x), f(x')) \leq Ld(x,x') + c$ for all $x, x' \in X$
- $d(y, f(X)) \leq c$ for all $y \in Y$.

We denote

$$QI(X) = \{f : X \to X \text{ is a quasiisometry}\} / \sim$$

where $f \sim g$ if $\sup_x d(f(x), g(x)) < +\infty$.

Quasiisometry

Let X and Y be metric spaces.

Quasiisometry

 $f:X \to Y$ is a quasiisometry if there exists $\ell, L > 0$ and $c \geqslant 0$ such that

- ► $\ell d(x,x') c \leq d(f(x), f(x')) \leq Ld(x,x') + c$ for all $x, x' \in X$
- $d(y, f(X)) \leq c$ for all $y \in Y$.

We denote

$$\mathsf{Ql}(X) = \{f : X \to X \text{ is a quasiisometry}\} / \sim$$

where $f \sim g$ if $\sup_x d(f(x), g(x)) < +\infty$.

- QI(X) is a group.
- If G is a group (finitely generated, or Lie), QI(G) makes sense.

Subgroups of QI(X)

Subgroups of QI(X)

 Rough isometries of Euclidean space are at a bounded distance away from isometries.

Subgroups of QI(X)

- Rough isometries of Euclidean space are at a bounded distance away from isometries.
- ► There are rough isometries of hyperbolic space 𝔅ⁿ_R not a bounded distance away from isometries.

Let G be a closed subgroup of upper triangular real matrices. We say that G is **rank one** if its central series stabilizes at a subgroup, N, having codimension one in G.

Let G be a closed subgroup of upper triangular real matrices. We say that G is **rank one** if its central series stabilizes at a subgroup, N, having codimension one in G.

Example : a Gromov hyperbolic Lie group										
G = <	$\left\{ \begin{pmatrix} e^t \\ 0 \\ 0 \end{pmatrix} \right\}$	$0\\e^{2t}\\0$	$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$	$: t, x, y \in \mathbf{R}$, $N = \langle$	$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right.$	0 1 0	$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} $	$ angle \simeq \mathbf{R}^2$	

Let G be a closed subgroup of upper triangular real matrices. We say that G is **rank one** if its central series stabilizes at a subgroup, N, having codimension one in G.

Example : a Gromov hyperbolic Lie group $G = \left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{2t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}, \ N = \left\{ \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \simeq \mathbf{R}^2$

Example : the group SOL

$$G = \left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}, \ N = \left\{ \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \simeq \mathbf{R}^2$$

Let G be a closed subgroup of upper triangular real matrices. We say that G is **rank one** if its central series stabilizes at a subgroup, N, having codimension one in G.

Example : a Gromov hyperbolic Lie group $G = \left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{2t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}, \ N = \left\{ \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \simeq \mathbf{R}^2$

Example : the group SOL

$$G = \left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}, \ N = \left\{ \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \simeq \mathbf{R}^2$$

Example : coming from simple Lie groups

G = AN, KAN rank one simple Lie group with trivial center.

HKS Geometry Day

Gabriel Pallier

SOL-like groups

Let G be a rank one solvable Lie group. The extension

```
1 \rightarrow N \rightarrow G \rightarrow \mathbf{R} \rightarrow 1
```

splits, and $t \in \mathbf{R}$ acts on N by an automorphism $\exp(tD)$.

SOL-like groups

Let G be a rank one solvable Lie group. The extension

```
1 \rightarrow \textit{N} \rightarrow \textit{G} \rightarrow \textit{R} \rightarrow 1
```

splits, and $t \in \mathbf{R}$ acts on N by an automorphism $\exp(tD)$. Gather the positive and negative eigenspaces of D; this gives \mathfrak{n}_+ and \mathfrak{n}_- , Lie subalgebras of $\mathfrak{n} = \operatorname{Lie}(N)$. Set $N_{\pm} = \exp(\mathfrak{n}_{\pm})$

Definition

We say that G is **SOL-like** if $[n_+, n_-] = 0$.

SOL-like groups

Let G be a rank one solvable Lie group. The extension

```
1 \rightarrow \textit{N} \rightarrow \textit{G} \rightarrow \textit{R} \rightarrow 1
```

splits, and $t \in \mathbf{R}$ acts on N by an automorphism $\exp(tD)$. Gather the positive and negative eigenspaces of D; this gives \mathfrak{n}_+ and \mathfrak{n}_- , Lie subalgebras of $\mathfrak{n} = \operatorname{Lie}(N)$. Set $N_{\pm} = \exp(\mathfrak{n}_{\pm})$

Definition

We say that G is **SOL-like** if $[n_+, n_-] = 0$.

- ► All the examples given before are SOL-like.
- If n_− = 0 or n₊ = 0, G is Gromov hyperbolic. The converse holds as well.

How one can think of SOL-like groups

The hyperbolic ones

$$\left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{2t} & y \\ 0 & 0 & 1 \end{pmatrix} : \begin{pmatrix} t \\ x \\ y \end{pmatrix} \in \mathbf{R}^3 \right\}$$

A left-invariant metric :

$$ds^2 = dt^2 + e^{-2t}dx^2 + e^{-4t}dy^2$$

"Metric view" of $\{x^2 + y^2 = \varepsilon^2\}$.

How one can think of SOL-like groups SOL

$$\left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}$$

A left-invariant metric :

$$ds^2 = dt^2 + e^{-2t} dx^2 + e^{2t} dy^2$$

"Metric view" of $\{x^2 + y^2 = \varepsilon^2\}$.

How one can think of SOL-like groups

General case

 $(N_+ \times N_-) \rtimes \mathbf{R}$

Theorem (Le Donne, P., Xie, 2022)

Let d_1, d_2 be left-invariant Riemannian metrics on a SOL-like group G. There is ρ (depending only on d_1 and d_2) such that $\rho d_1 - d_2$ is **bounded**.

Theorem (Le Donne, P., Xie, 2022)

Let d_1, d_2 be left-invariant Riemannian metrics on a SOL-like group G. There is ρ (depending only on d_1 and d_2) such that $\rho d_1 - d_2$ is **bounded**.

Corollary

Let $f \in Ql(G)$. If f is a rough isometry of d_1 , then it is a rough isometry of d_2 .

And so the subgroup RI(G) < QI(G) of rough isometries of G makes sense for these groups.

Corollary

Let $f \in Ql(G)$. If f is a rough isometry of d_1 , then it is a rough isometry of d_2 .

Corollary

Let $f \in Ql(G)$. If f is a rough isometry of d_1 , then it is a rough isometry of d_2 .

Let d_1 , d_2 be left-invariant Riemannian distances, let ρ be such that $\rho d_1 - d_2$ is bounded.

Corollary

Let $f \in Ql(G)$. If f is a rough isometry of d_1 , then it is a rough isometry of d_2 .

Let d_1 , d_2 be left-invariant Riemannian distances, let ρ be such that $\rho d_1 - d_2$ is bounded. Let $f : G \to G$ be a (1, 1, c) quasiisometry of d_1 . Then

Corollary

Let $f \in Ql(G)$. If f is a rough isometry of d_1 , then it is a rough isometry of d_2 .

Let d_1 , d_2 be left-invariant Riemannian distances, let ρ be such that $\rho d_1 - d_2$ is bounded.

Let f: G
ightarrow G be a (1,1,c) quasiisometry of d_1 . Then

• f is a $(1, 1, \rho c)$ quasiisometry of ρd_1 ;

Corollary

Let $f \in Ql(G)$. If f is a rough isometry of d_1 , then it is a rough isometry of d_2 .

Let d_1 , d_2 be left-invariant Riemannian distances, let ρ be such that $\rho d_1 - d_2$ is bounded.

- Let f: G
 ightarrow G be a (1,1,c) quasiisometry of d_1 . Then
 - f is a $(1, 1, \rho c)$ quasiisometry of ρd_1 ;
 - Since d₂ and ρd₁ differ by a bounded amount, say k, f is a (1, 1, ρc + 2k) quasiisometry of d₂.

Theorem (Le Donne, P., Xie, 2022)

Let d_1, d_2 be left-invariant Riemannian metrics on a SOL-like group G. There is ρ (depending only on d_1 and d_2) such that $\rho d_1 - d_2$ is **bounded**.

We can be more precise.

Theorem (Le Donne, P., Xie, 2022)

Let d_1, d_2 be left-invariant Riemannian metrics on a SOL-like group G. There is ρ (depending only on d_1 and d_2) such that $\rho d_1 - d_2$ is **bounded**.

We can be more precise. Let $g \notin N$. Then

$$\rho = \frac{d_2(N, gN)}{d_1(N, gN)}.$$

Rough idea of proof

Theorem

Let d_1, d_2 be left-invariant Riemannian metrics on a SOL-like group G. There is ρ (depending only on d_1 and d_2) such that $\rho d_1 - d_2$ is **bounded**.

 During most of their lifetime, the geodesic segments of d₁ and d₂ move transversally to the cosets of N.

Rough idea of proof

Theorem

Let d_1 , d_2 be left-invariant Riemannian metrics on a SOL-like group G. There is ρ (depending only on d_1 and d_2) such that $\rho d_1 - d_2$ is **bounded**.

- During most of their lifetime, the geodesic segments of d₁ and d₂ move transversally to the cosets of N.
- The d_i-distance between two points is, up to a constant, the sum of distances between specific cosets, involving those of max and min altitude.

Rough idea of proof

Theorem

Let d_1 , d_2 be left-invariant Riemannian metrics on a SOL-like group G. There is ρ (depending only on d_1 and d_2) such that $\rho d_1 - d_2$ is **bounded**.

- During most of their lifetime, the geodesic segments of d₁ and d₂ move transversally to the cosets of N.
- The d_i-distance between two points is, up to a constant, the sum of distances between specific cosets, involving those of max and min altitude.
- The cosets of maximal and minimal altitude depend on i = 1, 2 but only up to a

bounded amount.

Quasiisometric rigidity

Quasiisometries of semisimple Lie groups

Theorem (Pansu, Kleiner-Leeb (1989 rank one, 1994 higher rank))

Let G be a semisimple Lie group, with trivial center and no factor locally isomorphic to SO(n, 1) or SU(n, 1). Let X = G/K be the associated symmetric space. Then every quasiisometry of X is bounded distance away from an isometry of the symmetric metric on X.

Quasiisometries of semisimple Lie groups

Theorem (Pansu, Kleiner-Leeb (1989 rank one, 1994 higher rank))

Let G be a semisimple Lie group, with trivial center and no factor locally isomorphic to SO(n, 1) or SU(n, 1). Let X = G/K be the associated symmetric space. Then every quasiisometry of X is bounded distance away from an isometry of the symmetric metric on X.

Corollary of the rigidity of quasiisometries

QI rigidity

Let G be as before. Let Σ be a finitely generated group quasiisometric to G. Then there is a finite subgroup F of Σ such that Σ/F is a uniform lattice in G (QI rigidity).

Corollary of the rigidity of quasiisometries

QI rigidity

Let G be as before. Let Σ be a finitely generated group quasiisometric to G. Then there is a finite subgroup F of Σ such that Σ/F is a uniform lattice in G (QI rigidity).

Let X = G/K. The left action of Σ on itself gives $\Sigma \to QI(X) = Isom(X)$.

Corollary of the rigidity of quasiisometries

QI rigidity

Let G be as before. Let Σ be a finitely generated group quasiisometric to G. Then there is a finite subgroup F of Σ such that Σ/F is a uniform lattice in G (Ql rigidity).

Let X = G/K. The left action of Σ on itself gives $\Sigma \to Ql(X) = Isom(X)$.

QI rigidity holds true for uniform lattices in G = SO(n, 1), SU(n, 1) also but the proof is different. For $G \neq SO(2, 1)$: a subgroup of QI(X) with **uniformly bounded** ℓ^{-1} , L, c can be conjugated into Isom(X) (Sullivan, Tukia).

QI rigidity of SOL-like groups : examples

Theorem (Eskin, Fisher, Whyte 2013) "Existential" QI rigidity

Let $\boldsymbol{\Sigma}$ be a finitely generated group quasiisometric to

$$\mathsf{SOL} = \left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}$$

Then Σ/F is a (uniform) lattice in SOL for a finite $F < \Sigma$.

QI rigidity of SOL-like groups : examples

Theorem (Eskin, Fisher, Whyte 2013) "Existential" QI rigidity

Let $\boldsymbol{\Sigma}$ be a finitely generated group quasiisometric to

$$\mathsf{SOL} = \left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}$$

Then Σ/F is a (uniform) lattice in SOL for a finite $F < \Sigma$.

Theorem (Follows from Pansu 1989), "Inexistential" QI rigidity

There is no finitely generated group quasiisometric to

$$G = \left\{ \begin{pmatrix} e^t & 0 & x \\ 0 & e^{2t} & y \\ 0 & 0 & 1 \end{pmatrix} : t, x, y \in \mathbf{R} \right\}$$

Gabriel Pallier

The proofs are different, but they all involve some description of QI(G) at some point. In general, QI(G) is infinite-dimensional.

The proofs are different, but they all involve some description of QI(G) at some point. In general, QI(G) is infinite-dimensional.

Conjecture

Let G be a SOL-like group, different from the AN subgroup of SO(n, 1) or SU(n, 1). Then QI(G) = RI(G).

The proofs are different, but they all involve some description of QI(G) at some point. In general, QI(G) is infinite-dimensional.

Conjecture

Let G be a SOL-like group, different from the AN subgroup of SO(n, 1) or SU(n, 1). Then QI(G) = RI(G).

This equality can be reformulated from the proofs of QI rigidity in some cases of SOL-like groups for which it has been proved (Eskin-Fisher-Whyte, Xie, Carrasco Piaggio, Shanmugalingam-Xie, Kleiner-Müller-Xie).

The proofs are different, but they all involve some description of QI(G) at some point. In general, QI(G) is infinite-dimensional.

Conjecture

Let G be a SOL-like group, different from the AN subgroup of SO(n, 1) or SU(n, 1). Then QI(G) = RI(G).

This equality can be reformulated from the proofs of QI rigidity in some cases of SOL-like groups for which it has been proved (Eskin-Fisher-Whyte, Xie, Carrasco Piaggio, Shanmugalingam-Xie, Kleiner-Müller-Xie).

Quasiisometric rigidity and SOL-like groups

Let Σ be a finitely generated group, quasiisometric to a SOL-like G.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

HKS Geometry Day

Gabriel Pallier

Let Σ be a finitely generated group, quasiisometric to a SOL-like *G*.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

Let Σ be a finitely generated group, quasiisometric to a SOL-like *G*.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

Let Σ be a finitely generated group, quasiisometric to a SOL-like *G*.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

Let Σ be a finitely generated group, quasiisometric to a SOL-like G.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

Let Σ be a finitely generated group, quasiisometric to a SOL-like G.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

Let Σ be a finitely generated group, quasiisometric to a SOL-like *G*.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

Let Σ be a finitely generated group, quasiisometric to a SOL-like G.

Then conjecturally :

- **1.** Either G = AN and Σ/F is a uniform lattice in $\hat{G} = KAN$.
- **2.** Or *G* is unimodular and Σ/F is a lattice in some \widehat{G} with $G \to \widehat{G}$ co-compact.

Conjugating uniform subgroups

Carnot pairs

Let M be a nilpotent group and $D \in Der(\mathfrak{m})$ such that Liespan $(\ker(D-1)) = \mathfrak{m}$. We say that (M, D) is a Carnot pair.

Conjugating uniform subgroups

Carnot pairs

Let M be a nilpotent group and $D \in Der(\mathfrak{m})$ such that Liespan $(\ker(D-1)) = \mathfrak{m}$. We say that (M, D) is a Carnot pair.

Examples of such M :

- All abelian groups M, with D = 1.
- The Heisenberg group, with D = 2 restricted to the center, D = 1 on a complementary subspace.

Conjugating uniform subgroups

Carnot pairs

Let M be a nilpotent group and $D \in Der(\mathfrak{m})$ such that Liespan $(\ker(D-1)) = \mathfrak{m}$. We say that (M, D) is a Carnot pair.

Examples of such M :

- All abelian groups M, with D = 1.
- ► The Heisenberg group, with D = 2 restricted to the center, D = 1 on a complementary subspace.

Theorem (Dymarz-Fisher-Xie 2023)

Let *G* be a SOL-like group, $(N_- \times N_+) \rtimes_{(D_-,D_+)} \mathbf{R}$ where (N_{\pm}, D_{\pm}) are Carnot pairs. Let *Q* be a uniform subgroup of standard quasiisometries of *G*. Then *Q* can be conjugated into a standard group of standard isometries of the maximally symmetric metric of *G*.

Together with the description of QI(G), this is the key to QI rigidity for these groups.

Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed subgroup of real triangular matrices.

Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed subgroup of real triangular matrices.

Example : $\widetilde{\mathsf{PSL}}(2, \mathbf{R}) \sim_{qi} \mathbf{R} \times (\mathbf{R} \rtimes \mathbf{R}).$

Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed subgroup of real triangular matrices.

Example :
$$\widetilde{\mathsf{PSL}}(2, \mathbf{R}) \sim_{qi} \mathbf{R} \times (\mathbf{R} \rtimes \mathbf{R}).$$

Conjecture (Cornulier)

Let G and H be closed subgroups of real triangular matrices. If $G \sim_{qi} H$ then G and H are isomorphic.

Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed subgroup of real triangular matrices.

Example :
$$\widetilde{\mathsf{PSL}}(2, \mathbf{R}) \sim_{qi} \mathbf{R} \times (\mathbf{R} \rtimes \mathbf{R}).$$

Conjecture (Cornulier)

Let G and H be closed subgroups of real triangular matrices. If $G \sim_{qi} H$ then G and H are isomorphic.

Theorem (Pansu 1989 Gromov-hyperbolic, Ferragut 2022 non-unimodular, Dymarz-Fisher-Xie 2023 in a greater generality)

Let G be a SOL-like group $(N_- \times N_+) \rtimes_{(D_-,D_+)} \mathbf{R}$ where (N_{\pm}, D_{\pm}) are Carnot pairs. If H is a group quasiisometric to G then G and H are isomorphic.

To reach a description of QI(G) or classify SOL-like groups up to quasiisometries one needs to do **analysis**.

To reach a description of QI(G) or classify SOL-like groups up to quasiisometries one needs to do **analysis**.

▶ If G is a Gromov-hyperbolic SOL-like group : quasiconformal analysis on Carnot groups. A key tool is Pansu's differential. $\varphi : N \to N$ is Pansu-differentiable at $\xi \in N$ if

$$D_{\mathsf{P}}\varphi(\xi): u \mapsto \lim_{t \to +\infty} e^{tD}\varphi(\xi)^{-1}\varphi(\xi e^{-tD}u)$$

converges uniformly on every compact set of N.

To reach a description of QI(G) or classify SOL-like groups up to quasiisometries one needs to do **analysis**.

▶ If G is a Gromov-hyperbolic SOL-like group : quasiconformal analysis on Carnot groups. A key tool is Pansu's differential. $\varphi : N \to N$ is Pansu-differentiable at $\xi \in N$ if

$$D_{\mathsf{P}}\varphi(\xi): u \mapsto \lim_{t \to +\infty} e^{tD}\varphi(\xi)^{-1}\varphi(\xi e^{-tD}u)$$

converges uniformly on every compact set of N.

► If G is a Gromov-hyperbolic SOL-like group : coarse differentiation. A key tool, due to Eskin-Fisher-Whyte, is a large-scale interpretation of Lebesgue's theorem that BV functions on the real line are almost everywhere differentiable.

To reach a description of QI(G) or classify SOL-like groups up to quasiisometries one needs to do **analysis**.

▶ If G is a Gromov-hyperbolic SOL-like group : quasiconformal analysis on Carnot groups. A key tool is Pansu's differential. $\varphi : N \to N$ is Pansu-differentiable at $\xi \in N$ if

$$D_{\mathsf{P}}\varphi(\xi): u\mapsto \lim_{t\to+\infty} e^{tD}\varphi(\xi)^{-1}\varphi(\xi e^{-tD}u)$$

converges uniformly on every compact set of N.

► If G is a Gromov-hyperbolic SOL-like group : coarse differentiation. A key tool, due to Eskin-Fisher-Whyte, is a large-scale interpretation of Lebesgue's theorem that BV functions on the real line are almost everywhere differentiable.

The main theorem that I presented today only uses "soft" methods and little analysis.

Further reading

- ► Problems on the geometry of finitely generated solvable groups, Benson Farb & Lee Mosher (2000). ← Some problems have been solved by Eskin-Fisher-Whyte and followers, but this is still very a nice introduction with the main ideas.
- ► Ingredients and consequences of quasi-isometric rigidity of lattices in certain solvable Lie groups, Tullia Dymarz (2017 mini-course, notes can be found online).
- ► Coarse differentiation of quasiisometries (A. Eskin, D. Fisher, K. Whyte), Ann. Math 177 (2013), two papers.

Today: http://www.pallier.org/gabriel/pdfs/gday.pdf

Thank you!