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Let X and Y be metric spaces.

f: X — Y is a quasiisometry if there exists ¢, L > 0 and ¢ > 0 such that
» ld(x,x") — c < d(f(x),f(x")) < Ld(x,x") + ¢ for all x,x" € X
» d(y,f(X)) <cforallyeY.
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» ld(x,x") — c < d(f(x),f(x")) < Ld(x,x") + ¢ for all x,x" € X
» d(y,f(X)) <cforallyeY.

We denote
QI(X) ={f : X = X is a quasiisometry} / ~

where f ~ g if sup, d(f(x), g(x)) < +.
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Let X and Y be metric spaces.

f: X — Y is a quasiisometry if there exists ¢, L > 0 and ¢ > 0 such that
» ld(x,x") — c < d(f(x),f(x")) < Ld(x,x") + ¢ for all x,x" € X
» d(y,f(X)) <cforallyeY.

We denote
QI(X) ={f : X = X is a quasiisometry} / ~

where f ~ g if sup, d(f(x), g(x)) < +o0.
» QI(X) is a group.
» If G is a group (finitely generated, or Lie), QI(G) makes sense.
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Quasiisometry : (¢, L, c)

y

Rough isometry : (1,1, ¢)

A

Bounded distance away from an isometry|
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Quasiisometry : (¢, L, c)

Rough isometry : (1,1, ¢)

A

Bounded distance away from an isometry|

» Rough isometries of Euclidean space are at a bounded distance
away from isometries.
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Quasiisometry : (¢, L, c)

Rough isometry : (1,1, ¢)

A

Bounded distance away from an isometry|

» Rough isometries of Euclidean space are at a bounded distance
away from isometries.

» There are rough isometries of hyperbolic space Hy not a bounded
distance away from isometries.
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Let G be a closed subgroup of upper triangular real matrices.
We say that G is rank one if its central series stabilizes at a subgroup, N,
having codimension one in G.
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Let G be a closed subgroup of upper triangular real matrices.
We say that G is rank one if its central series stabilizes at a subgroup, N,
having codimension one in G.

Example : a Gromov hyperbolic Lie group
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Let G be a closed subgroup of upper triangular real matrices.

We say that G is rank one if its central series stabilizes at a subgroup, N,
having codimension one in G.

Example : a Gromov hyperbolic Lie group

et 0 x 1 0 x

G = 0 & yl|l:t,x,yeR}, N={[0 1 y|}~R?
0 0 1 0 0 1

Example : the group SOL
et 0 x 1 0 x

G = 0 et y|l:t,x,yecR), N={|0 1 y|}~R?
0 0 1 0 0 1
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Let G be a closed subgroup of upper triangular real matrices.
We say that G is rank one if its central series stabilizes at a subgroup, N,
having codimension one in G.

Example : a Gromov hyperbolic Lie group

et 0 x 1 0 x

G = 0 & yl|l:t,x,yeR}, N={[0 1 y|}~R?
0 0 1 0 01

Example : the group SOL
e 0 x 1 0 x

G = 0 et y|l:t,x,yecR), N={|0 1 y|}~R?
0 0 1 0 01

Example : coming from simple Lie groups

G = AN, KAN rank one simple Lie group with trivial center.
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SOL-like groups

Let G be a rank one solvable Lie group. The extension

1-—N—-G—R—1

splits, and t € R acts on N by an automorphism exp(tD).
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Let G be a rank one solvable Lie group. The extension
l1-N—->G—-R—1

splits, and t € R acts on N by an automorphism exp(tD).
Gather the positive and negative eigenspaces of D ; this gives ny and n_,
Lie subalgebras of n = Lie(N). Set Ny = exp(n4)

Definition
We say that G is SOL-like if [ny,n_] =0.
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Let G be a rank one solvable Lie group. The extension
l1-N—->G—-R—1

splits, and t € R acts on N by an automorphism exp(tD).
Gather the positive and negative eigenspaces of D ; this gives ny and n_,
Lie subalgebras of n = Lie(N). Set Ny = exp(n4)

Definition
We say that G is SOL-like if [ny,n_] =0.

» All the examples given before are SOL-like.

» Ifn_ =0o0rng =0, Gis Gromov hyperbolic. The converse holds as
well.
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How one can think of SOL-like groups

The hyperbolic ones

et 0 «x t
0 et yl|:|x]eR®
0 0 1 y

A left-invariant metric :

ds® = dt* + e *tdx* + e *'dy?

“Metric view" of {x? + y? = 2}
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et 0 x
0 et yl|:t,x,yeR
0 0 1

A left-invariant metric :

ds? = dt? + e ?tdx® + e*tdy?

“Metric view" of {x? + y? = 2}
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General case

(N x N_) xR
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Theorem (Le Donne, P., Xie, 2022)

Let di, d> be left-invariant Riemannian metrics on a SOL-like group G.
There is p (depending only on d; and d,) such that pd; — d> is bounded.
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Theorem (Le Donne, P., Xie, 2022)

Let di, d> be left-invariant Riemannian metrics on a SOL-like group G.
There is p (depending only on d; and d,) such that pd; — d> is bounded.

Corollary

Let f € QI(G). If f is a rough isometry of di, then it is a rough isometry
of d2.

And so the subgroup RI(G) < QI(G) of rough isometries of G makes
sense for these groups.
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Corollary

Let f € QI(G). If f is a rough isometry of di, then it is a rough isometry
of d2.
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Corollary

Let f € QI(G). If f is a rough isometry of di, then it is a rough isometry
of d2.

Let di, d> be left-invariant Riemannian distances, let p be such that
pdi — da is bounded.
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Corollary

Let f € QI(G). If f is a rough isometry of di, then it is a rough isometry
of dz.

Let di, d> be left-invariant Riemannian distances, let p be such that
pdi — da is bounded.
Let f: G — G be a (1,1, ¢) quasiisometry of di. Then
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Corollary

Let f € QI(G). If f is a rough isometry of di, then it is a rough isometry
of dz.

Let di, d> be left-invariant Riemannian distances, let p be such that
pdi — da is bounded.
Let f: G — G be a (1,1, ¢) quasiisometry of di. Then

» fisa (1,1, pc) quasiisometry of pdi ;
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How to deduce the corollary \‘(IT
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Corollary

Let f € QI(G). If f is a rough isometry of di, then it is a rough isometry
of d2.

Let di, d> be left-invariant Riemannian distances, let p be such that
pdi — da is bounded.
Let f: G — G be a (1,1, ¢) quasiisometry of di. Then
» fisa (1,1, pc) quasiisometry of pdi ;
» Since d» and pd; differ by a bounded amount, say k, f is a
(1,1, pc 4 2k) - quasiisometry of db.
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Theorem (Le Donne, P., Xie, 2022)

Let di, d> be left-invariant Riemannian metrics on a SOL-like group G.
There is p (depending only on d; and d») such that pd; — d> is bounded.

We can be more precise.
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Theorem (Le Donne, P., Xie, 2022)

Let di, d> be left-invariant Riemannian metrics on a SOL-like group G.
There is p (depending only on d; and d») such that pd; — d> is bounded.

We can be more precise.

Let g ¢ N. Then
dZ(NagN)

~ di(N, gN)’
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Rough idea of proof A\‘(IT

Theorem

Let di, d» be left-invariant Riemannian metrics on a SOL-like group G.
There is p (depending only on d; and d») such that pdi — d> is bounded.

» During most of their lifetime,
the geodesic segments of dy
and d> move transversally to
the cosets of N.
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Theorem

Let di, d» be left-invariant Riemannian metrics on a SOL-like group G.
There is p (depending only on d; and d») such that pdi — d> is bounded.

» During most of their lifetime,
the geodesic segments of dy
and d> move transversally to
the cosets of .

» The d;-distance between two
points is, up to a constant, the
sum of distances between
specific cosets, involving those

A
of max and min altitude.
n_ 1’1+
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Theorem

Let di, d» be left-invariant Riemannian metrics on a SOL-like group G.
There is p (depending only on d; and d») such that pdi — d> is bounded.

» During most of their lifetime,
the geodesic segments of dy
and d> move transversally to
the cosets of .

» The d;-distance between two
points is, up to a constant, the
sum of distances between I 4
specific cosets, involving those
of max and min altitude.

» The cosets of maximal and /\N
minimal altitude depend on
i=1,2 but only up to a

bounded amount.
HKS Geometry Day Gabriel Pallier 13/24
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Quasiisometries of semisimple Lie groups \‘(IT
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Theorem (Pansu, Kleiner-Leeb (1989 rank one, 1994 higher rank))

Let G be a semisimple Lie group, with trivial center and no factor locally
isomorphic to SO(n, 1) or SU(n,1). Let X = G/K be the associated
symmetric space. Then every quasiisometry of X is bounded distance away
from an isometry of the symmetric metric on X.
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Theorem (Pansu, Kleiner-Leeb (1989 rank one, 1994 higher rank))

Let G be a semisimple Lie group, with trivial center and no factor locally
isomorphic to SO(n, 1) or SU(n,1). Let X = G/K be the associated
symmetric space. Then every quasiisometry of X is bounded distance away
from an isometry of the symmetric metric on X.

Quasiisometry : (¢, L, c) t---

A

rigidity of quasii-

A

sometries : most
Rough isometry : (1,1, c) semisimple Lie
| groups

Bounded distance away from an isometry |4’ (
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Let G be as before. Let ¥ be a finitely generated group quasiisometric to
G. Then there is a finite subgroup F of X such that ¥/F is a uniform
lattice in G (QI rigidity).
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QI rigidity
Let G be as before. Let ¥ be a finitely generated group quasiisometric to

G. Then there is a finite subgroup F of X such that ¥/F is a uniform
lattice in G (QI rigidity).

Let X = G/K. The left action of X on itself gives ¥ — QI(X) = Isom(X).
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Corollary of the rigidity of quasiisometries ‘(IT
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QI rigidity

Let G be as before. Let ¥ be a finitely generated group quasiisometric to
G. Then there is a finite subgroup F of X such that ¥/F is a uniform
lattice in G (QI rigidity).

Let X = G/K. The left action of X on itself gives ¥ — QI(X) = Isom(X).

QI rigidity holds true for uniform lattices in G = SO(n, 1), SU(n, 1) also
but the proof is different. For G # SO(2,1) : a subgroup of QI(X) with
uniformly bounded ¢!, L, c can be conjugated into Isom(X) (Sullivan,
Tukia).
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Theorem (Eskin, Fisher, Whyte 2013) “Existential” QI rlgldlty

Let > be a finitely generated group quasiisometric to

et 0 «x
SOL = 0 et yl|:t,x,yeR
0 0 1

Then X /F is a (uniform) lattice in SOL for a finite F < ¥.
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Theorem (Eskin, Fisher, Whyte 2013) “Existential” QI rigidity

Let > be a finitely generated group quasiisometric to

et 0 «x
SOL = 0 et yl|:t,x,yeR
0 0 1

There is no finitely generated group quasiisometric to

et 0 x
G = 0 et yl|:t,x,yeR
0 0 1

(this group has no lattices).
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The proofs are different, but they all involve some description of QI(G) at
some point. In general, QI(G) is infinite-dimensional.
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The proofs are different, but they all involve some description of QI(G) at
some point. In general, QI(G) is infinite-dimensional.

Let G be a SOL-like group, different from the AN subgroup of SO(n,1) or
SU(n,1). Then QI(G) = RI(G).
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The proofs are different, but they all involve some description of QI(G) at
some point. In general, QI(G) is infinite-dimensional.

Conjecture
Let G be a SOL-like group, different from the AN subgroup of SO(n,1) or
SU(n,1). Then QI(G) = RI(G).

This equality can be reformulated from the proofs of QI rigidity in some
cases of SOL-like groups for which it has been proved (Eskin-Fisher-Whyte,
Xie, Carrasco Piaggio, Shanmugalingam-Xie, Kleiner-Miiller-Xie).
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The proofs are different, but they all involve some description of QI(G) at
some point. In general, QI(G) is infinite-dimensional.

Conjecture

Let G be a SOL-like group, different from the AN subgroup of SO(n,1) or
SU(n,1). Then QI(G) = RI(G).

This equality can be reformulated from the proofs of QI rigidity in some
cases of SOL-like groups for which it has been proved (Eskin-Fisher-Whyte,
Xie, Carrasco Piaggio, Shanmugalingam-Xie, Kleiner-Miiller-Xie).

Theorem (Ferragut 22, | Quasiisometry } many
reformulation using LDPX) (almost
voall?
Let G be a non-unimodular, : all7) .
. i SOL-like
not Gromov hyperbolic :
| Rough isometry |<—’ groups

SOL-type group. Then
QI(G) = RI(G).
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Quasiisometric rigidity and SOL-like groups
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Let ¥ be a finitely generated group, quasiisometric to a SOL-like G.

Then conjecturally :
1. Either G = AN and ¥ /F is a uniform lattice in G = KAN.
2. Or G is unimodular and X /F is a lattice in some G with G > G
co-compact.
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Let ¥ be a finitely generated group, quasiisometric to a SOL-like G.

SOL-like groups

Then conjecturally :
1. Either G = AN and ¥ /F is a uniform lattice in G = KAN.
2. Or G is unimodular and X /F is a lattice in some G with G > G
co-compact.
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Let ¥ be a finitely generated group, quasiisometric to a SOL-like G.

SOL-like groups

Then conjecturally :
1. Either G = AN and ¥ /F is a uniform lattice in G = KAN.

2. Or G is unimodular and X /F is a lattice in some G with G > G
co-compact.
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QI rigidity conjecture for SOL-like groups A\‘(IT

Let ¥ be a finitely generated group, quasiisometric to a SOL-like G.

SOL-like groups

_7 !
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> =<l !
\ : N — i\H\
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Then conjecturally :

1. Either G = AN and ¥ /F is a uniform lattice in G = KAN.

2. Or G is unimodular and X /F is a lattice in some G with G > G
co-compact.
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Let ¥ be a finitely generated group, quasiisometric to a SOL-like G.

SOL-like groups
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Then conjecturally :
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2. Or G is unimodular and X /F is a lattice in some G with G > G
co-compact.
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Let ¥ be a finitely generated group, quasiisometric to a SOL-like G.

SOL-like groups
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Then conjecturally :

1. Either G = AN and ¥ /F is a uniform lattice in G = KAN.
2. Or G is unimodular and X /F is a lattice in some G with G > G
co-compact.

HKS Geometry Day Gabriel Pallier 20/24



QI rigidity conjecture for SOL-like groups ‘(IT

Karlsruher Institut fiir Technologie

Let ¥ be a finitely generated group, quasiisometric to a SOL-like G.

SOL-like groups

AN of alKAM - 5 unimodular

>

=
| !
| |
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CON_ Ny £1

Then conjecturally :
1. Either G = AN and ¥ /F is a uniform lattice in G = KAN.

2. Or G is unimodular and X /F is a lattice in some G with G > G
co-compact.
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Let M be a nilpotent group and D € Der(m) such that
Liespan(ker(D — 1)) = m. We say that (M, D) is a Carnot pair.
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Carnot pairs

Let M be a nilpotent group and D € Der(m) such that
Liespan(ker(D — 1)) = m. We say that (M, D) is a Carnot pair.
Examples of such M :

» All abelian groups M, with D = 1.

» The Heisenberg group, with D = 2 restricted to the center, D =1 on
a complementary subspace.

HKS Geometry Day Gabriel Pallier 21/24
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Carnot pairs

Let M be a nilpotent group and D € Der(m) such that
Liespan(ker(D — 1)) = m. We say that (M, D) is a Carnot pair.
Examples of such M :
» All abelian groups M, with D = 1.
» The Heisenberg group, with D = 2 restricted to the center, D =1 on
a complementary subspace.

Theorem (Dymarz-Fisher-Xie 2023)

Let G be a SOL-like group, (N— x Ny) x(p_ p.y R where (N, Dy) are
Carnot pairs. Let O be a uniform subgroup of standard quasiisometries of
G. Then O can be conjugated into a standard group of standard
isometries of the maximally symmetric metric of G.

Together with the description of QI(G), this is the key to QI rigidity for

these groups.
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Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed
subgroup of real triangular matrices.
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Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed
subgroup of real triangular matrices.

Example : PSL(2, R) ~gi R x (R x R).
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Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed
subgroup of real triangular matrices.

Example : PSL(2, R) ~gi R x (R x R).

Conjecture (Cornulier)

Let G and H be closed subgroups of real triangular matrices. If G ~4; H
then G and H are isomorphic.
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Oservation (Cornulier)

Let G be a connected Lie group. Then G is quasiisometric to a closed
subgroup of real triangular matrices.

Example : PSL(2, R) ~gi R x (R x R).

Conjecture (Cornulier)

Let G and H be closed subgroups of real triangular matrices. If G ~4; H
then G and H are isomorphic.

Theorem (Pansu 1989 Gromov-hyperbolic, Ferragut 2022

non-unimodular, Dymarz-Fisher-Xie 2023 in a greater generality)

Let G be a SOL-like group (N— x Ny) x(p_ p,) R where (N+, Dy) are
Carnot pairs. If H is a group quasiisometric to G then G and H are
isomorphic.
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To reach a description of QI(G) or classify SOL-like groups up to
quasiisometries one needs to do analysis.
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To reach a description of QI(G) or classify SOL-like groups up to
quasiisometries one needs to do analysis.

» If G is a Gromov-hyperbolic SOL-like group : quasiconformal analysis
on Carnot groups. A key tool is Pansu’s differential. o : N — N is
Pansu-differentiable at £ € N if

. . tD -1 —tD
Dpp(€) s ursr lim eTp(£) p(Ee™u)

converges uniformly on every compact set of N.
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Things | have not said : how it works ‘(IT

To reach a description of QI(G) or classify SOL-like groups up to
quasiisometries one needs to do analysis.

» If G is a Gromov-hyperbolic SOL-like group : quasiconformal analysis
on Carnot groups. A key tool is Pansu’s differential. o : N — N is
Pansu-differentiable at £ € N if

Dep() s u s lim ePip(¢) p(¢e™n)

converges uniformly on every compact set of N.

» If G is a Gromov-hyperbolic SOL-like group : coarse differentiation. A
key tool, due to Eskin-Fisher-Whyte, is a large-scale interpretation of
Lebesgue’s theorem that BV functions on the real line are almost
everywhere differentiable.

HKS Geometry Day Gabriel Pallier 23/24



Things | have not said : how it works ‘(IT

To reach a description of QI(G) or classify SOL-like groups up to
quasiisometries one needs to do analysis.

» If G is a Gromov-hyperbolic SOL-like group : quasiconformal analysis
on Carnot groups. A key tool is Pansu’s differential. o : N — N is
Pansu-differentiable at £ € N if

Dep() s u s lim ePip(¢) p(¢e™n)

converges uniformly on every compact set of N.

» If G is a Gromov-hyperbolic SOL-like group : coarse differentiation. A
key tool, due to Eskin-Fisher-Whyte, is a large-scale interpretation of
Lebesgue’s theorem that BV functions on the real line are almost
everywhere differentiable.

The main theorem that | presented today only uses “soft” methods and
little analysis.
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Further reading A\‘(IT

Karlsruher Institut fiir Technologie

» Problems on the geometry of finitely generated solvable groups,
Benson Farb & Lee Mosher (2000). <— Some problems have been solved
by Eskin-Fisher-Whyte and followers, but this is still very a nice introduction
with the main ideas.

» Ingredients and consequences of quasi-isometric rigidity of lattices in
certain solvable Lie groups, Tullia Dymarz (2017 mini-course, notes
can be found online).

» Coarse differentiation of quasiisometries (A. Eskin, D. Fisher, K.
Whyte), Ann. Math 177 (2013), two papers.

Today : http://www.pallier.org/gabriel/pdfs/gday.pdf
Thank you'!
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