Dehn functions and the large-scale geometry of nilpotent groups

Gabriel Pallier (Sorbonne Université), joint work with Claudio Llosa Isenrich and Romain Tessera
Remote Geometry/Topology seminar at UCSB

$27^{\text {th }}$ April 2022

Let Γ and Λ be infinite, torsion-free, nilpotent, finitely generated groups. Thick chat \mathbb{Z}^{2}

$$
H_{3}(\mathbb{Z})=\left\{\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{Z}\right\}
$$

3 - vilpotert group

$$
\left.\begin{array}{r}
1=\left\langle x_{1}, x_{2}, x_{3,3}\right|\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1,}, x_{3}\right]=? \\
\left.\left[x_{i},\right\}\right]=1 \text { for all: }
\end{array}\right\rangle
$$

Question
If Γ and Λ are quasiisometric, what can be said about Γ and Λ ?
Quasiisometry: Make $\uparrow \curvearrowright \begin{aligned} & X \\ & \wedge \curvearrowright\end{aligned} \quad$ properly cownactly on geodesic metric
aquasisonetry is a map $\phi: X \rightarrow Y$ suehthat there are constant L, C

- $\quad-C+\frac{1}{L} d(x, y) \leqslant d(\phi(x), \phi(y)) \leqslant L d(x, y)+C \quad$ for every $x, y \leqslant X$
- $\forall z \in Y, \quad d(z, \phi(x)) \leq C \quad$ My Hind of x as a Universal cover

Malcev 1951 : there exists a simply connected nilpotent Lie group G $=" \Gamma \otimes \mathbf{R}$ " such that $\Gamma \hookrightarrow G$ with finite kernel and image a uniform lattice.

$$
\begin{aligned}
& \cdot \mathbb{Z}^{2} G=\mathbb{R}^{2} \\
& \cdot H_{3}(\mathbb{Z}) \quad G=H_{3}(\mathbb{R})=\left\{\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): \begin{array}{c}
a, b c \\
\in \mathbb{R}
\end{array}\right\}
\end{aligned}
$$

- 3 -nilpotat filiform group G a lie group with lie algebra

Nomizu 1954: if $G=\Gamma \otimes \mathbf{R}$ then $H^{*}(\Gamma, \mathbf{R})=H^{*}(G, \mathbf{R})$
. Betti numbers $b_{k}(\Gamma) \leqslant\binom{\operatorname{ved}(\Gamma)}{k}$ and if there is equality everywhere then Γ is abelian
Conjecture (folklore) : Γ and Λ are quasiisometric $\Longleftrightarrow \Gamma \otimes \mathbb{R}$ and $\Lambda \otimes \mathbb{R}$ are isomorphic.

Let \mathcal{G} be the nilpotent Lie algebra of a group G. Define its contraction

$$
\begin{gathered}
\mathcal{G}_{\infty}=\bigoplus_{i>0} C^{i} \mathcal{G} / C^{i+1} \mathcal{G} \quad \text { "simpler" Lie algebra } \\
\left(\mathcal{H}_{3}\right)_{\infty}=\mathcal{H}_{3} \text {-Heisceberg algebra e is celled Carrot }
\end{gathered}
$$ with the induced Lie brackets and denote G_{∞} the associated Lie group.

1. $\left(G_{\infty}\right)_{\infty}=G_{\infty}$; we call G Carnot if $G=G_{\infty}$
2. Contracting preserves the nilpotency class.
3. G_{∞} is "more abelian" than G, for instance $b_{p}\left(G_{\infty}\right) \geqslant b_{p}(G)$ for all p.
$b_{1}(G)=4 b_{1}\left(G_{\infty}\right)=4$ in or eraple, but $b_{2}(G)=6 \quad b_{2}\left(G_{\infty}\right)=7$

Contraction : $\mathcal{G}_{\infty}=\bigoplus_{i>0} C^{i} \mathcal{G} / C^{i+1} \mathcal{G}$

Theorem (Pansu, 1980s) If Γ and Λ are quasiisometric, then

$$
(\Gamma \otimes \mathbf{R})_{\infty} \simeq(\Lambda \otimes \mathbf{R})_{\infty}
$$

This uses asymptotic cones. Look at \hat{T} and Λ "from infinty" You see $(\Gamma \notin \mathbb{R})_{\infty}$ and $(\Lambda \otimes \mathbb{R})_{\infty}$ with subRiemannian metrics. Uses Geometry and some analysis.

Theorem (Shalom, 2004) If Γ and Λ are quasiisometric, then for all p $b_{p}(\Gamma)=b_{p}(\Lambda)$. Reline on reformulating the QI into a Jniporn Measure Equivalence.

A geometric method to tell some groups with same asymptotic cones apart

Theorem (Llosa Isenrich, Pallier, Tessera, 2020)

The Dehn function of $\Gamma_{6,10}$ grows like n^{3} while the Dehn function of $\Gamma_{6,3}$ grows like $n^{4} \ll$ the Dehr fuction is a quasiisometry invariant.

The Dehn function
(a) For the geometric group theorist Let $\langle S \mid \mathcal{R}\rangle$ be a finite presentation of Γ, w a (freely reduced) word over S
Area $(w)=|w|\langle\langle\mathcal{R}\rangle\rangle$ lough as a product $\left(\delta \Gamma(n)=\sup _{\text {t }}(w) \leqslant n \operatorname{Area}(w)\right.$. velidors
$1=\pi_{1}(\pi) \subset M_{\text {milmaifold }}$
(b) For the differential geometer

Let M be a nilmanifold, $\Gamma=\pi_{1}(M)$, $\gamma: S^{1} \rightarrow M$ Lipschitz.
Area $(\gamma)=\inf \int_{\Delta^{2}}\left|\Lambda^{2} d \phi\right|$ taken over $W^{1, n}$ maps $\phi: \Delta^{2} \rightarrow M$ with trace $\gamma \cdot \delta \delta_{\Gamma}(r)=\sup _{\ell(\gamma) \leqslant r} \operatorname{Area}(\gamma)$.
$\left.\left.\hat{\imath}=u^{3}\langle x, y, s|[x, y],[y\},\right],[\xi, x\rangle\right\rangle$ They are equintatat (ty the growth Drawing in

$z^{4} y^{5} 3^{-4} x^{3} z^{4} y^{-5} z^{-4} x^{-3}=1$

(b)

Some general upper bounds

Easy Lemma $\delta_{G \times H}(n) \preccurlyeq \max \left\{n^{2}, \delta_{G}(n) \times \Delta_{H}(n)\right\}$.
Theorem 1 (Gromov 1994) If G is a Carnot group (that is, $G=G_{\infty}$) of class c then $\delta_{G}(n) \preccurlyeq n^{c+1}$.
Theorem 2 (Papasoglu 1996) For every $\alpha>1$, if $\delta_{(\Gamma \otimes \mathbf{R})_{\infty}}(n) \preccurlyeq n^{\alpha}$, then $\delta_{\Gamma}(n) \preccurlyeq n^{\alpha+\varepsilon}$ for all $\varepsilon>0$. Proof in R. Young's "Notes on asymptotic cones".

$$
\begin{aligned}
& \text { For } \Gamma_{6,10} \text { and } \Gamma_{6,3} \text { : } \\
& \delta_{\Gamma_{6,3}}(n) \leqslant m_{\text {by Grown }}^{4}=n^{3+1} \\
& \delta_{\sigma_{6} 10}(n) \leqslant n^{4+\varepsilon} \text { by } 7_{\text {apasogh }}
\end{aligned}
$$

(Adually, $\delta_{\hat{\Gamma}_{6,10}}(n) \leqslant n^{4}$ by Gerten-Hott. Riley

$$
2003)
$$

A lower bound

(a) Geometric group theorist Let

$$
1 \rightarrow \mathbf{Z} \rightarrow \bar{\Gamma} \rightarrow \Gamma \rightarrow 1
$$

be a central extension of Γ, with 1 sent to $s \in \bar{\Gamma}$. If $w \in F_{\bar{s}}$ represents s^{n}, then

$$
\operatorname{Area}(w) \geqslant \ell_{s \cup \bar{S}}\left(s^{n}\right)
$$

(b) Differential geometer Let β be a left-invariant 2-form on $\Gamma \otimes \mathbf{R}$ with ${ }^{\text {closed }}$ primitive α. $\overline{\mathcal{S}} \overline{\operatorname{Sin}}$.

$$
\operatorname{Area}(\gamma) \geqslant C\left|\int_{\gamma} \alpha\right|
$$

Highly distorted central extensions. 2-forms with "heavy" primitives.
\leftrightarrow Dehn function
that grows fast

Queen Dido and the Heisenberg group

The isoperinetric inequality in R^{2} is quadratic

$\langle s\rangle$ is quadratically disobited and geodesics 4 it project to optional isoperietric $\mathrm{log}_{\mathrm{o}}$ s in the plane
$\mathbb{R}^{2}, X, Y \quad d_{x}, d_{y}$ dna l basis $\beta=d x d_{y} \quad \alpha=x d y$

Back to $\Gamma_{6,10}$ and $\Gamma_{6,3}$
 is only $m^{3} \leqslant \delta_{\Gamma_{610}}(n)$

Central products of filiform groups

Theorem (Llosa Isenrich, Pallier, Tessera, 2020)

The Dehn function of Γ grows like n^{p} while the Dehn function of Λ grows like n^{p+1}.
If p is odd, $b_{2}(\Lambda)-b_{2}(\Gamma)=1$. K This is why the bower bound given ty If p is even, $b_{2}(\Lambda)-b_{2}(\Gamma)=2$! K The buerbourd giver by sobmology is ${ }_{n} p^{-1}$

Using forms with bounded differentials

Bull. Soc. math. France,
98,1970 , p. 8 i al 116 .
Verge 1970 In even dimension $\geqslant 6$, there are two Carnot filiform algebras. In odd dimension, there is only the "standard one".

1. If p is odd, there is a n-distorted central extension that prides the bower bound
2. If p is even, this extension foils to exist. The most distorted corral extension is
$n^{p^{-1}}$-distorted Verge cycle: $\xi_{2} \wedge \xi_{p}+\xi_{3} \wedge \xi_{p-1}+\cdots$
\leadsto So instead of an invariant form β we use a bounded form β It gives the lower bound n^{P} for δ via th differatial geometry approach.

A few words on the upper bound

Theorem [LI-P-T]
$\delta_{\Gamma_{6,10}}(n) \preccurlyeq n^{3}$.

Start : Gromov, Turston, Allcock, Olshanskii-Sapir : $\delta_{H_{5}(Z)} \asymp n^{2}$.

In $H_{5}(\mathbf{Z})$, horizontal loops have horizontal fillings

Lemma 1 (Changing factors)
Every word w in x_{1}, x_{3} representing a central element in $\Gamma_{6,10}$ is homotopic (rewritable) to the same word over y_{1}, y_{3} with cost $O\left(\ell(w)^{2}\right)$.
ff: x_{1}, x_{3}, y_{1} and y_{3} are in a copy of $\mathrm{H}_{5}(\mathbb{)})$. Sn this already follows from $\delta_{H_{5}}(n)\left\{n^{2} \quad\right.$ (Olshanskeii-Sapir)

representing the ventral decent.
Lemma 2
In order to prove the upper bound one needs only an algorithm do reduce hemotepig words of length n in x_{1}, x_{2} at cost $O\left(n^{3}\right)$.

If: At first have a word over $x_{1}, x_{2}, y_{1}, y_{3}$.
We can separate into two. subworels over x_{1}, x_{2} and y_{1}, y_{3} Then, replace the ward over y_{1}, y_{3} with a word in x_{1}, x_{3} by heme 1 Finally $x_{3}=\left[x_{1}, x_{2}\right]^{11}$.

To a product of rectangle words $\}$ That is an dgorithm, For $m, n, \ell \geqslant 0$ define $T=T(m, n, \ell)=\left[x_{1}^{m}, x_{3}^{n}\right]\left[x_{1}^{\ell}, x_{3}\right]$. (It represents $z^{m n+\ell}$.)
Let $w\left(x_{1}, x_{2}\right)$ be a word of length $\leqslant n$.
We repeat $O(n)$ times the following process at $\operatorname{cost} O\left(n^{2}\right)$ each time. to

- Move all the instances of x_{1} to the left starting with the left-most. words
- After moving an x_{1} to the left, move all $x_{3} s$ created in the process to the left.
- Move all the $T(m, n, 0)$ words created in the process to the right.

After repeating this i times the word has the form

$$
x_{3}^{k_{1}} x_{1}^{k_{2}} x_{2}^{k_{3}} x_{1}^{ \pm 1} v\left(x_{1}, x_{2}\right) \prod_{j \leqslant i} T_{i-j}
$$

with $\left|k_{2}\right|+\left|k_{3}\right|+1+\ell(v) \leqslant n$ and $k_{1} \leqslant i n$.

Claim

Each application of the 3 items above needs a cost $O\left(n^{2}\right)$.

We end with a product of a power of and rectangle words, $\Pi T_{I-i}, I \leqslant n$.

Claim (Similar to Olshanskii-Sapir's Lemma)

Let $I>0$ and let $T_{i}=T\left(m_{i}, n_{i}, l_{i}\right), 1 \leqslant i \leqslant l$ be words with $\left|m_{i} \cdot n_{i}+l_{i}\right| \leqslant n^{2}$ and $\left|m_{i}\right|,\left|n_{i}\right| \leqslant 3 n$. Assume that $\prod_{i=1}^{l} T_{i}$ is null-homotopic. There is a constant $C_{2}>0$ such that the identity

$$
\prod_{i=1}^{l} T_{I-i} \equiv 1
$$

holds in $\Gamma_{6,10}$ with area $\leqslant C_{2} \cdot I \cdot n^{2}$.

Thank you for your attention.

