Dehn functions and the large-scale geometry of nilpotent groups

Gabriel Pallier (Sorbonne Université), joint work with Claudio Llosa Isenrich and Romain Tessera

Remote Geometry/Topology seminar at UCSB

27th April 2022

Let Γ and Λ be infinite, torsion-free, **nilpotent**, finitely generated groups. Think durk \mathbb{Z}^2 , $H_{S}(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a_{j}b_{j}c \notin \mathbb{Z} \right\}$ 3 - Nilpokerk group $I^{1} = \langle x_{1}, x_{2}, x_{3} \rangle [2x_{a}, x_{2}] = x_{s}, [x_{a}, x_{c}] = g$ $[x_{1}, S] = 1$ for all i

Question

If Γ and Λ are quasiisometric, what can be said about Γ and Λ ?

Quasiisonetry: Make 1 (
$$\chi$$
 X properly compating on geodesic metric
 $\Lambda \cap Y$
 σ quasiisonetry is a map $\phi: X \to Y$ such that there are constant L, C
 $-C + \frac{1}{2} d(x, y) \leq d(\varphi(x), \varphi(y)) \leq L d(x, y) + C$ for every $x, y \in X$
 $\cdot \forall g \in Y, \quad d(g, \varphi(x)) \leq C$ May thick of x as a universal cover
 $\cdot \forall g \in Y, \quad d(g, \varphi(x)) \leq C$ May thick of x as a universal cover
 $\cdot \varphi \in Rimedian compating middle 1/11$

Malcev 1951 : there exists a simply connected nilpotent Lie group G = " $\Gamma \otimes \mathbf{R}$ " such that $\Gamma \hookrightarrow G$ with finite kernel and image a uniform lattice.

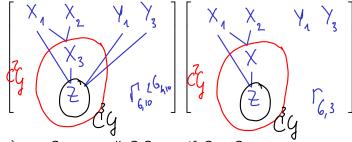
 $-\mathcal{Z}^{2} \quad G = \mathcal{R}^{2}$ $\cdot H_{S}(\mathcal{U}) \quad G = H_{S}(\mathcal{R}) = \left\{ \begin{pmatrix} 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} ; \begin{array}{c} G_{1} & b \\ e & R \end{array} \right\}$ $\cdot 3 \text{-nilpotent filitore group} \quad G a \text{ lie group with lie algebra} \quad \begin{array}{c} X_{1} \quad X_{2} \\ X_{3} \\ \end{array}$ **Nomizu 1954 :** if $G = \Gamma \otimes \mathbf{R}$ then $H^*(\Gamma, \mathbf{R}) = H^*(G, \mathbf{R})$. Betti numbers $b_k(T^1) \leq \binom{\operatorname{ved}(T^1)}{k}$ and if there is equality everywhere then T^1 is abelian

Conjecture (folklore) : Γ and Λ are quasiisometric $\iff \Gamma \otimes \mathbb{R}$ and $\Lambda \otimes \mathbb{R}$ are isomorphic.

Let \mathcal{G} be the nilpotent Lie algebra of a group G. Define its contraction

$$\mathcal{G}_{\infty} = \bigoplus_{i>0} C^{i} \mathcal{G} / C^{i+1} \mathcal{G} \qquad \text{Simpler} \qquad \text{Lie algebra}$$
$$(\mathcal{H}_{2}) = \mathcal{H}_{2} \qquad \text{Heisenberg algebra}$$

with the induced Lie brackets and denote G_{∞} the associated Lie group.



1. $(\mathit{G}_\infty)_\infty = \mathit{G}_\infty$; we call G Carnot if $\mathit{G} = \mathit{G}_\infty$

2. Contracting preserves the nilpotency class.

3. G_{∞} is "more abelian" than G, for instance $b_p(G_{\infty}) \ge b_p(G)$ for all p. $b_1(G) = 4 \quad b_1(G_{\infty}) = 4 \quad \text{in our erruple}, \quad b_1 = b_2(G) = 6 \quad b_2(G_{\infty}) = 7$ 3/18

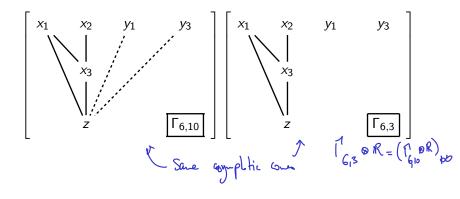
Contraction :
$$\mathcal{G}_{\infty} = \bigoplus_{i>0} C^i \mathcal{G} / C^{i+1} \mathcal{G}$$

Theorem (Pansu, 1980s) If Γ and Λ are quasiisometric, then

$$(\Gamma \otimes \mathbf{R})_{\infty} \simeq (\Lambda \otimes \mathbf{R})_{\infty}.$$

This uses asymptotic cores. Look at I and Λ "from infinity"
You See ($\Gamma \otimes \mathbb{R}$) and $(\Lambda \otimes \mathbb{R})_{\infty}$ with subRiemannian metrics.
Uses Geometry and some analysis.

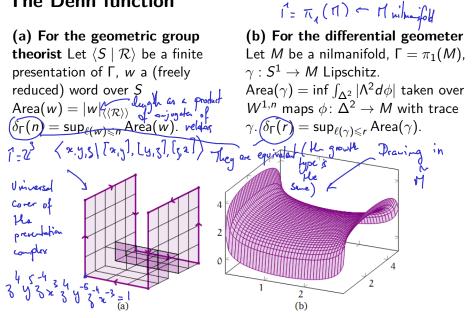
Theorem (Shalom, 2004) If Γ and Λ are quasiisometric, then for all p $b_p(\Gamma) = b_p(\Lambda)$. Relies on reformed ting the \Box into a Uniform Tressure Equivalence. A geometric method to tell some groups with same asymptotic cones apart



Theorem (Llosa Isenrich, Pallier, Tessera, 2020)

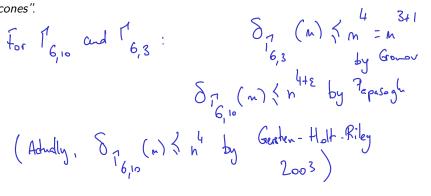
The Dehn function of $\Gamma_{6,10}$ grows like n^3 while the Dehn function of $\Gamma_{6,3}$ grows like n^4 . The Dehn function is a quantisonetry inversion $\Gamma_{6,3}$.

The Dehn function



Some general upper bounds

Easy Lemma $\delta_{G \times H}(n) \preccurlyeq \max \{n^2, \delta_G(n) \times \Delta_H(n)\}$. Theorem 1 (Gromov 1994) If *G* is a Carnot group (that is, $G = G_{\infty}$) of class *c* then $\delta_G(n) \preccurlyeq n^{c+1}$. Theorem 2 (Papasoglu 1996) For every $\alpha > 1$, if $\delta_{(\Gamma \otimes \mathbf{R})_{\infty}}(n) \preccurlyeq n^{\alpha}$, then $\delta_{\Gamma}(n) \preccurlyeq n^{\alpha+\varepsilon}$ for all $\varepsilon > 0$. Proof in *R*. Young's "Notes on asymptotic cones".



A lower bound

(a) Geometric group theorist Let $1 \rightarrow \mathbf{Z} \rightarrow \overline{\Gamma} \rightarrow \Gamma \rightarrow 1$

be a **central** extension of Γ , with 1 sent to $s \in \overline{\Gamma}$. If $w \in F_{\overline{S}}$ represents s^n , then

Area $(w) \ge \ell_{s \cup \overline{S}}(s^n)$.

(b) Differential geometer Let β be a left-invariant 2-form on $\Gamma \otimes \mathbf{R}$ with a primitive α . Stift of S in $\overline{\Gamma}$.

$$\mathsf{Area}(\gamma) \geqslant C \left| \int_{\gamma} \alpha \right|$$

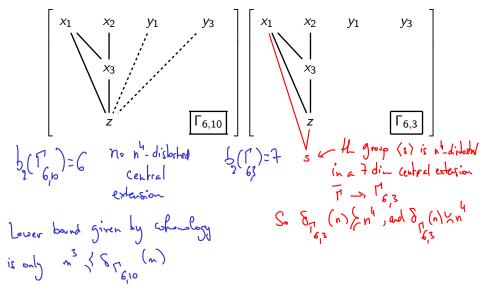
Highly distorted central extensions.

2-forms with "heavy" primitives.

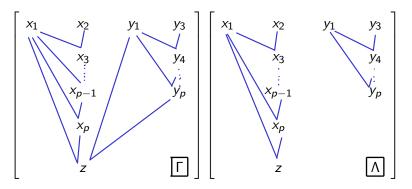
(3 Dehn function That grows fast

Queen Dido and the Heisenberg group X_1 X2 The isoperimetric inequality in R° is quedratic $H_3(\mathbf{Z})$ $[\tilde{v}_{\lambda}, y_{\lambda}] = s^{\prime}$ (s) is quedratically districted and geodesics to it project to optimal isoperimetric loops in the R2, X, Y dx, dy duct beis B=dx ndy d= x dy

Back to $\Gamma_{6,10}$ and $\Gamma_{6,3}$



Central products of filiform groups



Theorem (Llosa Isenrich, Pallier, Tessera, 2020)

The Dehn function of Γ grows like n^p while the Dehn function of Λ grows like n^{p+1} .

If p is odd,
$$b_2(\Lambda) - b_2(\Gamma) = 1$$
.
If p is even, $b_2(\Lambda) - b_2(\Gamma) = 2$.
This is why the lower bound given by differs
If p is even, $b_2(\Lambda) - b_2(\Gamma) = 2$.
The lover bound given by channel of it is a prime of the lower bound given by channel of the lower bound given by the lower bound giv

Using forms with bounded differentials

Bull, Soc. math. France. 98, 1970, p. 81 à 116.

Vergne 1970 In even dimension \geq 6, there are two Carnot filiform algebras. In odd dimension, there is only the "standard one".

1. If p is odd, there is a m, dislorted central extension & that poindes the lower bound 2. If p is even, this extansion foils to exist. The most distorted catral extension is nP-1 - distorted no So instead of an invariant form

COHOMOLOGIE DES ALGÈBRES DE LIE NILPOTENTES. APPLICATION A L'ÉTUDE LA VARIÉTÉ DES ALGÈBRES DE LIE NILPOTENTES

DAB

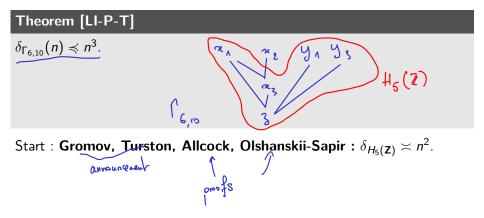
MICHELE VERGNE.

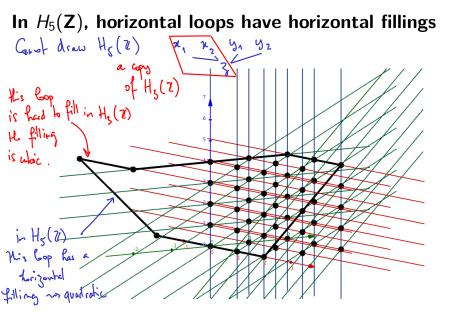
Introduction.

A la suite de M. GERSTENHABER, plusieurs auteurs ont publié des articles consacrés à l'étude de la variété des structures algébriques d'un certain type (structure d'algèbres associatives, d'algèbres de Lie, etc.) portées par un espace vectoriel fixe V. Il est apparu qu'il y avait un

 $(\xi_1,\ldots,\xi_p,\zeta,\eta_1,\eta_3,\ldots,\eta_p)$ dual basis to $(X_1, \ldots, X_p, Z, \ldots, Y_p)$ E. ~ E. + E. ~ Ep-1 by cle : B we use a bounded form B It gives the lower bound of for & via the differential geometry approach. 12/18

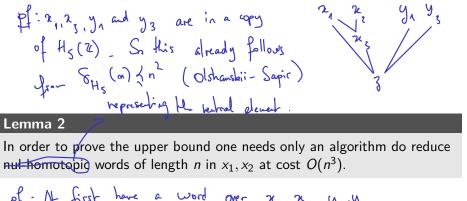
A few words on the upper bound





Lemma 1 (Changing factors)

Every word w in x_1, x_3 representing a central element in $\Gamma_{6,10}$ is homotopic (rewritable) to the same word over y_1, y_3 with cost $O(\ell(w)^2)$.



To a product of rectangle words For $m, n, \ell \ge 0$ define $T = T(m, n, \ell) = [x_1^m, x_3^n][x_1^\ell, x_3]$. in part inspired (It represents $z^{mn+\ell}$.) Let $w(x_1, x_2)$ be a word of length $\le n$. We repeat O(n) times the following process at cost $O(n^2)$ each time. to

- Move all the instances of x_1 to the left starting with the left-most. words
- ► After moving an x₁ to the left, move all x₃s created in the process to the left.
- Move all the T(m, n, 0) words created in the process to the right.

After repeating this *i* times the word has the form

$$x_3^{k_1}x_1^{k_2}x_2^{k_3}x_1^{\pm 1}v(x_1,x_2)\prod_{j\leqslant i}T_{i-j}$$

with $|k_2| + |k_3| + 1 + \ell(v) \leq n$ and $k_1 \leq in$.

Claim

Each application of the 3 items above needs a cost $O(n^2)$.

We end with a product of a power of and rectangle words, $\prod T_{I-i}$, $I \leq n$.

Claim (Similar to Olshanskii-Sapir's Lemma)

Let l > 0 and let $T_i = T(m_i, n_i, l_i)$, $1 \le i \le l$ be words with $|m_i \cdot n_i + l_i| \le n^2$ and $|m_i|, |n_i| \le 3n$. Assume that $\prod_{i=1}^l T_i$ is null-homotopic. There is a constant $C_2 > 0$ such that the identity

$$\prod_{i=1}^{l} T_{l-i} \equiv 1$$

holds in $\Gamma_{6,10}$ with area $\leqslant C_2 \cdot I \cdot n^2$.

Thank you for your attention.